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Abstract—As one key resource to learn Application Programming Interfaces (APIs), a lot of API reference documentation lacks code
samples with usage scenarios, thus heavily hindering developers from programming with APIs. Although researchers have investigated
how to enrich API documentation with code samples from general code search engines, two main challenges remain to be resolved,
including the quality challenge of acquiring high-quality code samples and the mapping challenge of matching code samples to usage
scenarios. In this study, we propose a novel approach named ADECK towards enriching API documentation with code samples and
corresponding usage scenarios by leveraging crowd knowledge from Stack Overflow, a popular technical Question and Answer (Q&A)
website attracting millions of developers. Given an API related Q&A pair, a code sample in the answer is extensively evaluated by
developers and targeted towards resolving the question under the specified usage scenario. Hence, ADECK can obtain high-quality code
samples and map them to corresponding usage scenarios to address the above challenges. Extensive experiments on the Java SE and
Android API documentation show that the number of code-sample-illustrated API types in the ADECK-enriched API documentation is
3.35 and 5.76 times as many as that in the raw API documentation. Meanwhile, the quality of code samples obtained by ADECK is better
than that of code samples by the baseline approach eXoaDocs in terms of correctness, conciseness, and usability, e.g., the average
correctness values of representative code samples obtained by ADECK and eXoaDocs are 4.26 and 3.28 on a 5-point scale in the
enriched Java SE API documentation. In addition, an empirical study investigating the impacts of different types of API documentation
on the productivity of developers shows that, compared against the raw and the eXoaDocs-enriched API documentation, the ADECK-
enriched API documentation can help developers complete 23.81% and 14.29% more programming tasks and reduce the average
completion time by 9.43% and 11.03%.

Index Terms—API Documentation; Code Sample; Usage Scenario; Stack Overflow; Crowd knowledge
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1 INTRODUCTION

D EVELOPERS often consult Application Programming
Interface (API) reference documentation (API docu-

mentation for short) to learn the correct usages of unfamiliar
APIs, including functionalities, inheritance relationships,
and owned members [1], [2], [3]. However, a lot of API
documentation lacks code samples with corresponding
usage scenarios (i.e., situations in which specific APIs
are called to implement certain functionalities [4]). For
example, according to our statistics, only 11% and 6% of
API types are illustrated by code samples but with vague
usage scenarios in the Java Standard Edition (SE) [5] and
Android API documentation [6], respectively. The lack of
code samples with usage scenarios hampers developers
from programming with APIs. From the perspective of
open source community, a survey over more than 2,000
Eclipse and Mozilla developers shows that, almost 80%
of participants consider that the lack of code samples
with their usage scenarios is an obstacle in understanding
APIs [7]. From the perspective of commercial enterprises,
two surveys on 698 IBM developers and 1,000 Microsoft
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developers indicate that, developers highly expect that code
samples under different usage scenarios could be provided
for as many APIs as possible [8], [9]. Hence, it would be
ideal if API documentation can be automatically enriched
by code samples with usage scenarios.

In the literature, Kim et al. propose a seminal approach
named eXoaDocs to automatically enrich API documenta-
tion with code samples [10]. Given an API documentation,
eXoaDocs first extracts all the API methods and searches
them in the Google code search engine. Then, from the
top-ranked retrieved webpages, eXoaDocs extracts code
samples to build a code sample repository. Next, eXoaDocs
characterizes all the code samples with a set of properties so
as to aggregate them into groups. Finally, eXoaDocs selects
representative code samples from each group and embeds
them into the API documentation. Experimental results
show that the eXoaDocs-enriched API documentation can
boost the productivity of developers. However, there remain
the following two challenges to be tackled.

The Quality Challenge. How to guarantee the quality of
the retrieved code samples? There is no uniform mechanism or
specific measure to ensure the quality of the code samples
obtained by eXoaDocs, since a code sample from a general
code search engine may be written by a junior developer
or a beginner without being evaluated by other developers
and verified in different conditions [11].

The Mapping Challenge. How to map code samples to
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corresponding usage scenarios? There are no explicit mappings
between code samples and corresponding usage scenarios
in eXoaDocs. Thus, developers have to manually check and
test the code samples to clarify their corresponding usage
scenarios, which may be time consuming.

To tackle the above challenges, we propose a nov-
el approach named API Documentation Enrichment with
Crowd Knowledge (ADECK). In contrast to eXoaDocs,
ADECK leverages crowd knowledge from Stack Overflow,
a popular technical Question and Answer (Q&A) website,
to identify high-quality code samples and corresponding
usage scenarios for enriching API documentation. More
specifically, ADECK works as follows. First, it combines
questions and their corresponding best answers together
in Stack Overflow to achieve a series of Q&A pairs.
Then, ADECK extracts APIs from API documentation and
employs a traceability linking method to link these APIs
with related Q&A pairs. For each linked Q&A pair, ADECK
extracts the usage scenario from the question title and its
corresponding code sample from the best answer to form
a 〈Usage Scenario, Code Sample〉 tuple. Next, the tuples
linked with each API are clustered and the resulting clusters
are ranked by their sizes. Finally, the tuples achieving the
highest user score in the top-ranked clusters are embedded
into API documentation based on a predefined template.

We evaluate the performance of ADECK on two repre-
sentative sets of API documentation, namely the Java SE
API Documentation (JavaD) in version 7 and the Android
API Documentation (AndroidD) in version 4.4. Extensive
experiments show that, from the perspective of the code
sample quantity, the number of code-sample-illustrated API
types in the ADECK-enriched JavaD and AndroidD is
3.35 and 5.76 times as many as that in the raw JavaD
and AndroidD. Meanwhile, ADECK achieves true positive
rates of 94.83% and 91.73% and improves on eXoaDocs by
26.24% and 8.60%. From the perspective of code-sample
quality, the quality of code samples obtained by ADECK
statistically outperforms that of code samples by eXoaDocs
in terms of correctness, conciseness, and usability. For example,
according to the manual evaluations of volunteers, the
average correctness values of code samples in the ADECK-
enriched JavaD and the eXoaDocs-enriched JavaD are 4.26
and 3.28 on a 5-point likert scale, respectively. To evaluate
the impacts of different types of API documentation on
the productivity of developers, we invite 21 developers
to resolve three real programming tasks using JavaD and
its enriched versions. Compared against JavaD and the
eXoaDocs-enriched JavaD, developers using the ADECK-
enriched JavaD are 9.43% and 11.03% faster in terms of the
average completion time, and complete 23.81% and 14.29%
more programming tasks.

In summary, the main contributions of this study are:
(1) We propose a novel API documentation enrichment

approach ADECK. To the best of our knowledge, this
is the first work to enrich API documentation using
code samples with usage scenarios by leveraging crowd
knowledge from Stack Overflow.

(2) We conduct extensive experiments to demonstrate the
effectiveness of ADECK. Extensive experiments show
that ADECK can provide both high-quality code sam-
ples and usage scenarios. Meanwhile, the ADECK-

Fig. 1. ArrayList in JavaD

enriched API documentation could efficiently boost the
productivity of developers.

(3) We open the ADECK-enriched API documentation to the
public at https://github.com/APIDocEnrich/ADECK,
which may provide new insights into the ways of
preparing better API documentation.
The remainder of the paper is structured as follows. We

first show the motivation in Section 2 and the framework
of ADECK with its main components in Section 3. Next, we
present the experimental setup and experimental results in
Section 4 and Section 5. Then, we elaborate the threats to
validity and related work in Section 6 and Section 7. Finally,
we conclude this study and present future work in Section
8.

2 MOTIVATION

In this section, we first describe the scarcity of code samples
in API documentation by illustrating an example. Then,
we elaborate why leveraging crowd knowledge in Stack
Overflow can address the two challenges, i.e., the quality
challenge and the mapping challenge.

2.1 Scarcity of Code Samples in API Documentation

A lot of API documentation is short of high-quality code
samples. For example, there are only 11% and 6% of API
types illustrated with code samples in JavaD and AndroidD,
respectively. As for a specific API ArrayList in JavaD, its
functional description shown in Fig. 1 illustrates how to
instantiate a synchronized ArrayList with only one statement
[2]. Apart from this statement, there is no code sample
illustrating other usages of ArrayList in the functional
description. The single statement is poorly regulated and
far from enough to satisfy developers’ various requirements
[12]. On the one hand, only one statement is insufficient
for developers to correctly program with ArrayList, since
they do not know how to prepare for it and what are
the post operations. On the other hand, developers may
encounter various usage scenarios for ArrayList, e.g., sorting
an ArrayList, comparing two ArrayLists, and traversing an

https://github.com/APIDocEnrich/ADECK
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Fig. 2. A Q&A pair example in Stack Overflow

ArrayList. The existing statement is far from enough to meet
the diverse demands of developers [13].

For API documentation, the lack of code samples with
corresponding usage scenarios has become a key factor of
hampering API understanding [7]. Three surveys conducted
on developers from both open source community and
commercial enterprises confirm that, developers heavily
expect that API documentation provides corresponding
code samples under different usage scenarios for APIs as
many as possible [7], [8], [9].

2.2 Crowd Knowledge in Stack Overflow

Stack Overflow is a popular technical Question and Answer
(Q&A) website with a community of 7.6 million developers
and more than 10 million Q&A pairs [14]. Within Stack
Overflow, developers often ask a variety of questions about
how to use APIs correctly under specific usage scenarios,
which are usually described in the question titles. In general,
an API related question may attract tens of developers to
submit and evaluate answers with code samples. Hence, on
the one hand, a high-quality code sample can be acquired
from its best answer (the accepted answer or the answer
achieving the highest user score). On the other hand, this
code sample can be mapped to its corresponding usage
scenario in the question title.

Combined with a Q&A pair in Stack Overflow shown
in Fig. 2, we illustrate why leveraging crowd knowledge
from Stack Overflow could address the two challenges, i.e.,
the quality challenge and the mapping challenge. There
are some items in this Q&A pair, e.g., the question title,
the tags, and the user score. user25778 provides a usage
scenario for ArrayList in the question title, and jonathan-
stafford submits the accepted answer with a code sample
to resolve it. The accepted answer achieves an extremely
high user score, i.e., 582 [15]. It reveals that the code sample
in the accepted answer has been evaluated and verified by
hundreds of developers in their conditions, so its quality
can be well guaranteed. In addition, the code sample in
the accepted answer is specifically designed for ArrayList
under the usage scenario “remove repeated elements from

Fig. 3. The framework of ADECK

ArrayList” in the question title. Hence, the code sample can
be credibly mapped to its corresponding usage scenario.
In such a way, the two challenges can be tackled by fully
leveraging crowd knowledge in Stack Overflow.

3 FRAMEWORK OF ADECK
In this section, we illustrate the framework of ADECK
in Fig. 3. The fundamental goal of ADECK is to extract
high-quality code samples with their usage scenarios from
Stack Overflow and embed them into corresponding API
documentation. ADECK takes in Stack Overflow dump
files and API documentation as input and generates the
ADECK-enriched API documentation. It consists of six
components, namely API-Type Extractor, Q&A-Pair Search
Engine, Q&A-Pair Preprocessor, Tuple Clustering, Tuple
Representation, and Information Embedding. In order to
facilitate understanding, we select the ArrayList API in the
Java SE API documentation as an example to clearly explain
how each component works in the following subsections.

3.1 API-Type Extractor

API-Type Extractor identifies and extracts API types from
API documentation. We choose APIs at API type level (i.e.,
class or interface) rather than API member level (i.e., method
or field) due to two reasons. On the one hand, the number
of usage scenarios for an API member is very limited, since
API members may not have complex behaviors [16], [17].
On the other hand, the extracted code samples for API types
usually cover the usages of API members [18].

In this paper, we choose JavaD and AndroidD as case
studies, since they are well established with different charac-
teristics and attract millions of developers. The selected API
documentation is organized as a set of HTML webpages,
each of which explains a specific API type in detail with
an uniform formatting style [5], [6]. By parsing the title of
each webpage, API-Type Extractor can correctly extract the
corresponding API type.

As well known, interface APIs do not contain concrete
method implementation [15], [19], thus we only extract class
APIs and exclude interface APIs. It means that we do not
enrich interface APIs with code samples and usage sce-
narios. To accelerate programming and promote efficiency,
developers tend to use non-qualified API names (i.e., simple
names) in code samples. Hence, we extract non-qualified
API names from API documentation to exactly match APIs
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in code samples. The same as Kim et al. [10] and Parnin et
al. [15], if there exist API naming collisions for the same
non-qualified name in different packages, we distinguish
them by using fully-qualified names. For example, we
use “javax.management.timer.Timer” and “java.util.Timer” to
distinguish the two “Timer” APIs. Similar to Parnin et al.
[15] and Bavota et al. [20], when extracting class APIs
from AndroidD, we only retain the API types inside the
“android.*” packages to avoid repetition with Java SE API
types. Finally, we obtain 2,305 Java SE API types and 1,636
Android API types from JavaD and AndroidD, respectively.

3.2 Q&A-Pair Search Engine

Q&A-Pair Search Engine generates a series of Q&A pairs
from Stack Overflow dump files and links them to related
API types.

Data Collection and Preprocessing. We download Stack
Overflow data dump files published on Sep. 8, 2016 [21],
and form a series of Q&A pairs by combining each question
with its best answer. The same as Nie et al. [22], if a question
has an accepted answer, we combine it with the accepted
answer, since it is well suitable to resolve this question
and has been tested and verified by the submitter of this
question. If there is no accepted answer for a question, we
combine this question with the answer achieving the highest
user score, because the other developers agree that this
answer can help to resolve this question. The other answers
are neglected, since they may convey irrelevant information
or provide an inefficient solution. In addition, each Q&A
pair is associated with a set of tags, and we only retain the
Q&A pairs tagged with “Java” and “Android”, respectively
[15]. Since we want to obtain code samples for API types,
we further filter out those Q&A pairs whose best answers
do not contain code sample surrounded by the 〈pre〉 tag. In
such a way, we obtain about 1.2 and 0.9 million Q&A pairs
related to Java and Android API types. These Q&A pairs are
the sources to obtain high-quality code samples with their
usage scenarios.

Traceability Linking. In this study, we employ the trace-
ability linking method proposed by Treude and Robillard
[1] to link Q&A pairs to relevant API types. This method
consists of two steps. The first step determines a set of
candidate Q&A pairs for a specific API type, and the second
step links the candidate Q&A pairs to the API type.

To make it easy to understand, an API type is denoted
as A and a Q&A pair is denoted as P . The first step of the
traceability linking method obtains a set of candidate Q&A
pairs {P1, P2, ..., Pn}, which are likely to explain the usages
of A. Pi is treated as a candidate Q&A pair, if A appears in
the code sample in its best answer. Otherwise, Pi is filtered
out. The second step further employs five heuristic rules to
link the set of candidate Q&A pairs {P1, P2, ..., Pn} to A. If
Pi in the candidate set matches at least one of the following
heuristic rules, it is linked to A. Otherwise, it is filtered out.
(1) Non-qualified A is surrounded by the 〈code〉 tag in the

question body of Pi, e.g., 〈code〉ArrayList〈/code〉.
(2) Non-qualified A is preceded by “a” or “an” in the

question title of Pi, e.g., “How to sort an ArrayList”.
(3) The question body of Pi has a hyperlink to the offi-

cial API documentation webpage of A by the 〈href〉

Fig. 4. A Debug-corrective Q&A pair example

tag, e.g., 〈a href = “https://docs.oracle.com/javase/
7/docs/api/java/util/ArrayList.html”〉ArrayList〈/a〉.

(4) Non-qualified A is surrounded by punctuations or
lower-case words in the question body of Pi, e.g.,
“Check if a value exists in “ArrayList””.

(5) Fully-qualified A appears in the question body or the
question title of Pi, e.g., “How to use java.util.ArrayList”.
Experimental results show that these heuristic rules are

effective to link Q&A pairs to API types [1]. For example,
employing the five heuristic rules, the F-Measure values of
linking Q&A pairs to one-word API types (e.g., List) and
multi-word API types (e.g., ArrayList) are 90% and 94%,
respectively [1]. By applying these heuristic rules to the
candidate Q&A pairs, we can obtain the linked Q&A pairs
for a specific API type.

Example. Taking the ArrayList API from JavaD as an ex-
ample, after identifying candidate Q&A pairs and applying
the five heuristic rules, Q&A-Pair Search Engine links 5,023
Q&A pairs to it based on this traceability linking method.

3.3 Q&A-Pair Preprocessor
Q&A-Pair Preprocessor extracts usage scenarios and code
samples from the linked Q&A pairs for each API type, and
combines them into 〈Usage Scenario, Code Sample〉 tuples.
To deal with the mapping challenge, we map the code
samples with their usage scenarios in the same Q&A pairs.
In such a way, the code samples are exactly used under the
corresponding usage scenarios.

Usage Scenario Extraction. A usage scenario should
be as concise as possible so that developers can quickly
understand its functionality. Similar studies regard the
question title as the intent of the code sample in the best
answer in Stack Overflow [23], since the question title is the
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straightforward target and summary of a Q&A pair. Hence,
in this study, we similarly regard the question title of a Q&A
pair as its usage scenario.

Code Sample Extraction. Code samples are typically
surrounded by the 〈pre〉 tag in Stack Overflow, hence it is
easy to extract the code sample from the best answer of a
Q&A pair. If there is more than one code sample in the best
answer, we merge them together to generate a complete
code sample as done by Ghafari et al. [24]. The extracted
usage scenario and code sample shown in the red rectangles
in Fig. 2 give an example of the extraction procedure.

As stated by Parnin et al. [15] and de Souze et al.
[25], there are five types of Q&A pairs, namely How-
to-do-it, Conceptual, Seeking-something, Debug-corrective, and
Miscellaneous. How-to-do-it Q&A pairs provide scenarios in
the questions and seek for their implementation. Conceptual
Q&A pairs seek for the explanation of particular topics
or discussion on certain operations. Seek-something Q&A
pairs seek for something related to programming. Debug-
corrective Q&A pairs seek for correct code samples for given
problematic ones. In addition, Miscellaneous Q&A pairs have
multiple purposes. For example, a Miscellaneous Q&A pair
may want to figure out the definition of a specific topic
and furthermore seek for its implementation. The five types
of Q&A pairs can be handled by following the above
procedures except for the Debug-corrective Q&A pairs, which
need special processing. In a Debug-corrective Q&A pair, the
questioner usually provides a buggy code sample with a
runtime error or an exception. The other answerers try to
locate and fix the bug by providing a patch. If we extract
usage scenarios and code samples using the above method,
the usage scenarios will contain the keywords like “error”
and code samples are incomplete with only patches. As a
result, Debug-corrective Q&A pairs need special treatment
after they are identified.

Debug-corrective Q&A Pairs Identification. Based on
our observation on about 500 Debug-corrective Q&A pairs,
we find that they tend to have the following two character-
istics in common:

(1) The question title of a Debug-corrective Q&A pair of-
ten employs some keywords, i.e., “error”, “exception”,
“fail”, and “issue”, to describe the problem in practice.

(2) The question body of a Debug-corrective Q&A pair
usually contains a stack trace capturing the runtime
error or exception to help the other developers debug.

The first characteristic can be captured by keyword
matching and the second one can be matched by some
regular expressions defined by Linares-Vsquez et al. [26].
If a Q&A pair conforms to any of the two characteristics,
ADECK regards it as a Debug-corrective Q&A pair. According
to our statistics, more than 18% Q&A pairs are identified
as the Debug-corrective Q&A pairs among the linked Q&A
pairs, and this percentage of the Debug-corrective Q&A
pairs is similar with the percentage reported by Nasehi et
al. [27]. In addition, we also randomly sample 100 identified
Debug-corrective Q&A pairs to manually check whether they
really handle the code problems in development. As a
result, we find that 91 Q&A pairs really deal with the code
problems. Hence, the precision of identifying the Debug-
correct Q&A pairs is 91%.

Fig. 4 shows a Q&A pair in Stack Overflow [28]. We can
see that this Q&A pair follows both the two Debug-corrective
characteristics, since the question title contains the keyword
“error” and the question body provides a runtime error
stack trace. Taking the Debug-corrective Q&A pair in Fig. 4 as
an example, we illustrate the special processing procedures.

Usage Scenario Extraction for Debug-corrective Q&A
Pairs. If there are Debug-corrective keywords, we remove
them with their prepositions from the question title, and
treat the processed title as the usage scenario. Hence, the
usage scenario of the Q&A pair in Fig. 4 is “write ArrayList
String to File” after removing the keyword “Error” with the
preposition “in”.

Bug-Free Code Sample Extraction for Debug-corrective
Q&A Pairs. We combine the buggy code sample and its
patch together to generate a bug-free code sample. This
procedure consists of three steps, i.e., buggy code and patch
extraction, bug location detection, and bug fix.

In buggy code and patch extraction, we obtain the
buggy code and the corresponding patch from the question
body and the best answer of a Debug-corrective Q&A pair,
respectively. Buggy codes are identified from the question
body by the 〈pre〉 tag, except for the runtime error stack
trace, which can be captured by regular expressions [26]. In
addition, if there is only one code sample in the best answer,
ADECK treats it as the patch. However, if there is more
than one code sample, we first employ keyword matching
to identify the real patch, since developers tend to use a
set of keywords to express the comparison relationship,
i.e., “change...to...”, “instead of”, and “rather than” [29].
If these keywords exist, we distinguish the patch based
on the meanings of these keywords from the best answer.
For example, the code sample after “to” is identified as the
patch, if the keywords “change...to...” are matched. If there
is no keyword matched, we combine all the code samples in
the best answer and regard them as the patch.

In bug-location detection, we identify the location where
the bug exists. We split the buggy code sample and the patch
into statements, and only retain valid statements with their
sequences by removing blank lines and punctuation lines.
Then, similar as Gao et al. [29], edit distance is calculated
between each statement in the buggy code sample and each
statement in the patch. One statement is considered to be
transformed from another statement, if their edit distance is
less than 0.1. In such a way, we can locate the first buggy
statement and the last buggy statement, both of which have
the edit distance lower than 0.1 with a statement in the
patch. After detecting the first buggy statement and the last
buggy statement, we can locate the buggy code block.

In bug fix, we replace the located buggy code block with
the patch, and keep the other statements the same. In such
a way, we can obtain the complete bug-free code sample.

Example. From the example shown in Fig. 4, we can
distinguish the buggy code from the runtime error stack
trace. Meanwhile, the unique code sample in the best
answer is treated as the patch. After detecting the bug
location, we can identify the buggy code block shown in
the red rectangle. Finally, we replace the buggy code block
with the patch to generate a bug-free code sample. In such
a way, we can extract usage scenarios and bug-free code
samples from Debug-corrective Q&A pairs.
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3.4 Tuple Clustering

Tuple Clustering clusters 〈Usage Scenario, Code Sample〉
tuples for each API type to avoid duplicate tuples.

Similarity Calculation. Before clustering related tuples
for each API type, we should first define the similarity be-
tween two 〈Usage Scenario, Code Sample〉 tuples. Inspired
by the method proposed by Higo and Kusumoto [30], the
similarity consists of three parts, namely, Usage scenario
Lexical Similarity (ULS), Code sample Lexical Similarity
(CLS), and Code sample Structural Similarity (CSS). The
three parts of this similarity measure different aspects
of code samples, and functional sameness between code
samples can be detected by combining them together [30].

ULS and CLS are measured by the widely used cosine
similarity [31]. Each usage scenario or code sample is
represented as a vector after a series of Natural Language
Processing (NLP) steps, namely tokenization, stemming,
and stop word removal [31]. In the vector, each dimension
stands for a token and its value stands for the weight of this
token. The weights of tokens are calculated by the widely
used Term Frequency (TF) × Inverse Document Frequency
(IDF) weighting scheme [16]. Then, cosine similarity is
calculated to measure the cosine of the angle between the
two vectors in the inner product space.

CSS measures API-call-sequence similarity at the char-
acter level, and similar studies have shown its effectiveness
[30], [32]. CSS is calculated as follows. First, the variable
names and method names in code samples are replaced
with the strings of “variable” and “method” respectively to
eliminate the influence of different names. Then, each code
sample is converted into a token sequence, in which all the
spaces are deleted. Next, the Longest Common Subsequence
(LCS) is identified between the two token sequences. Finally,
CSS is defined as the length of LCS divided by the length of
the shorter token sequence.

CSS(C1, C2) =
|LCS(S1, S2)|

min{Len(S1), Len(S2)}
(1)

where S1 and S2 are two token sequences derived from
two code samples C1 and C2, LCS(S1, S2) is the LCS for
S1 and S2. Len(Si) is the length of Si (i = 1 or 2).

The three similarities should be normalized before com-
bining them together, i.e., each value is divided by the
maximal value in each similarity for each API type. In this
study, we define that the three similarities contribute equally
to the final score. Hence, the final similarity score between
two tuples can be calculated as follows:

Simi(T1, T2) =
ULS(U1, U2) + CLS(C1, C2) + CSS(C1, C2)

3
(2)

where T1 = 〈U1, C1〉 and T2 = 〈U2, C2〉 represent two
distinct 〈Usage Scenario, Code Sample〉 tuples. X means the
normalized value of X , e.g., ULS is the normalized ULS.

Clustering. Based on the similarity of every two 〈Usage
Scenario, Code Sample〉 tuples, we can obtain the similarity
matrix for all the linked tuples of an API type. The similarity
matrix is used as the input of the clustering algorithm. In
this study, we employ the APCluster algorithm using affin-
ity propagation to cluster 〈Usage Scenario, Code Sample〉

Fig. 5. The enriched API documentation for ArrayList

tuples, since APCluster can automatically determine the
optimal value of the cluster number [33].

Example. We obtain 388 clusters after clustering related
tuples for ArrayList by applying APCluster. We can see that
developers will encounter various usages of ArrayList in
practice. The biggest cluster containing 233 tuples illustrates
the usage scenario “searching a specified object in an
ArrayList”. It shows that this usage scenario is commonly
discussed by developers.

3.5 Tuple Representation
Tuple Representation selects the most representative 〈Usage
Scenario, Code Sample〉 tuple from each resulting cluster. To
deal with the quality challenge, we employ the user score
voted by the crowds in Stack Overflow as the indicator
of the quality. We only select those 〈usage scenario, code
sample〉 tuples achieving the highest user scores in clusters
as representatives and embed them into API documentation.

The 〈Usage Scenario, Code Sample〉 tuples in each
cluster are assumed to illustrate the same usage scenario
for an API type. Similar to the method proposed by
Nasehi et al. [27], the tuple achieving the highest user score
is chosen to represent each cluster. In such a way, the
quality of the extracted code sample can be guaranteed.
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The selected representative tuples can better cover the API
usage scenarios that are most desired by developers. The
more tuples in a cluster, the more discussions around it
by developers. Hence, the number of tuples in a cluster
could reflect the popularity of its corresponding usage
scenario. We rank the clusters by their sizes (the number of
tuples in them) in a descending order, and recommend the
representative tuples in the top 10 clusters for each API type.
Recommending the top 10 results is a common practice in
recommendation systems within software engineering, and
many studies also evaluate their results based on the top 10
results [25], [29]. If the number of automatically generated
clusters is less than 10, we recommend all the representative
tuples.

Example. Still taking ArrayList as an example, the top
10 largest clusters include 1486 tuples in total, which covers
nearly 30% of the linked Q&A pairs. The average user score
of the top 10 tuples for ArrayList is 63, which is relatively
high [27]. It means that these representative tuples have
been checked and verified by many developers in their
conditions. Hence, the quality of these representative tuples
is likely to be high.

3.6 Information Embedding

Information Embedding embeds the top-ranked represen-
tative 〈Usage Scenario, Code Sample〉 tuples into API
documentation. We define a template to organize these
tuples for API types, and place them between the functional
description and the constructor or method summary table in
their API-documentation webpages. Since 〈Usage Scenario,
Code Sample〉 tuples are relatively independent from the ex-
isting information in API documentation, no matter where
we place them, they will not decrease the intelligibility and
readability of the entire API documentation [34]. By refor-
matting the webpages of API documentation, the ADECK-
enriched API documentation can be generated.

Example. Fig. 5 shows an example of the ADECK-
enriched API documentation for ArrayList with the top 3
usage scenarios, which are placed between the functional
description and the constructor summary. Each section
includes two parts corresponding to the two elements in
each 〈Usage Scenario, Code Sample〉 tuple, and the two
parts are separated with each other to make them readable
and scannable. In such a way, developers can benefit from
the enriched API documentation.

4 EXPERIMENTAL SETUP

In this section, we try to investigate the following four RQs:
RQ1: What is the quantity of the API types illustrated

with code samples and usage scenarios in the ADECK-
enriched API documentation?

Motivation. The more code samples with usage scenar-
ios can be enriched in API documentation, the more benefit
the enriched API documentation could give to developers.
To investigate how many API types are illustrated with
code samples and usage scenarios in the ADECK-enriched
API documentation, we set up this RQ. In addition, we
also would like to investigate the quantities of the code-
sample-illustrated API types in the other two types of API

TABLE 1
The selected API types

Id Java SE Android

1 java.app.Applet android.view.View
2 java.awt.Image android.os.Bundle
3 java.beans.PropertyChangeEvent android.content.Intent
4 java.io.File android.app.Activity
5 java.lang.Object android.content.Context
6 java.net.URL android.util.Log
7 java.security.Security android.widget.Textview
8 java.sql.DriverManager android.view.ViewGroup
9 java.util.ArrayList android.widget.Button
10 java.swing.Jcomponent android.view.LayoutInflater

documentation, i.e., the raw API documentation and the
eXoaDocs-enriched API documentation.

Method. Specifically, for JavaD and AndroidD, we run
ADECK to generate the ADECK-enriched API documenta-
tion. Meanwhile, since eXoaDocs is not publicly available,
we implement eXoaDocs by ourselves accordingly [10]. We
also apply eXoaDocs to generate the eXoaDocs-enriched API
documentation. We then count the number of API types
illustrated with code samples in the three types of API
documentation. In addition, we also identify true positive
API types in the enriched API documentation and calculate
the true positive rates to further compare eXoaDocs and
ADECK. Specifically, three authors of the paper manually
classify the code samples in the eXoaDocs-enriched and
ADECK-enriched API documentation into false positives
and true positives. If a code sample really concentrates on
illustrating the proper usages for the linked API type, we
judge it as a true positive. Otherwise, we treat it as a false
positive. In addition, if all the enriched code samples for an
API type are judged as false positives, then the API type is
treated as a false positive API type. Otherwise, it is a true
positive API type. Each author checks one-third of all the
code samples. To guarantee the quality of the evaluation, the
code samples evaluated by an author are double checked
by another author. If there exists a disagreement, the two
authors sit together and discuss it to reach an agreement.
The validation procedure takes each author about one week
to complete.

RQ2: What is the quality of the code samples in the
ADECK-enriched API documentation?

Motivation. The enriched code samples with usage
scenarios are expected to have a high quality. In this RQ, we
would like to investigate the quality of the code samples in
the ADECK-enriched API documentation, and whether it is
superior to the quality of the code samples in the eXoaDocs-
enriched API documentation.

Method. Similar to Treude et al. [1] and Beyer et al.
[35] and suggested by the Apatite tool [36], we select the
code samples of the top 10 most commonly used API types
shown in Table 1 to evaluate, since these API types have
a broad coverage to resolve common programming tasks.
All these API types can be enriched with code samples
by both eXoaDocs and ADECK. In addition, to achieve a
credible evaluation, we invite the undergraduate students
who achieve an examination score higher than 90/100 in the
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Advanced Java Programming class from Dalian University
of Technology. Eventually, 8 graduate students agree to
participate in this experiment. All these volunteers are
familiar with Java and Android development with more
than four years of experience in programming, so they can
qualify for this evaluation.

We extract the enriched code samples for the select-
ed API types from the eXoaDocs-enriched and ADECK-
enriched API documentation, respectively. It should be
noted that we only extract code samples without corre-
sponding usage scenarios from the ADECK-enriched API
documentation so that we can make a fair comparison. We
distribute each code sample to two different volunteers to
evaluate and score, and their average value is treated as
the final score. To avoid the evaluation bias, the origins
(eXoaDocs or ADECK) of the code samples are unknown
to the volunteers. Similar as Kim et al. [10], after reading
and testing the assigned code samples, each volunteer is
required to grade each assigned code sample independently
based on three quality evaluation criteria:
(1) Correctness - Are the code samples correct without an

error?
(2) Conciseness - Do the code samples contain mandatory

steps to implement a functionality with less statements?
(3) Usability - Are the code samples easy to understand and

reuse?
The score of each criterion is on a 5 points likert

scale [10], whose guidelines are as follows: {1-very low,
2-low, 3-moderate, 4-high, 5-very high}. A higher score
represents a higher quality of a criterion for the enriched
code samples. Meanwhile, we also calculate the Weighted
Kappa Agreement for volunteers on evaluating the quality
of the code samples to show their agreements.

RQ3: What are the coincidence levels between code
samples and their corresponding usage scenarios in the
ADECK-enriched API documentation?

Motivation. Different from the eXoaDocs-enriched API
documentation containing only code samples for API types,
the ADECK-enriched API documentation includes both
code samples and their usage scenarios. In this RQ, we
would like to investigate whether the code samples are
consistent with their corresponding usage scenarios in the
ADECK-enriched API documentation.

Method. We select the same API types as RQ2 to
evaluate. We extract both the code samples and their
corresponding usage scenarios for the selected API types
from the ADECK-enriched API documentation. The same
volunteers as RQ2 are required to score all the 〈Usage
Scenario, Code Sample〉 tuples for the selected API types.
Before the annotation, each volunteer is assigned with an ex-
perimental tutorial. In this experimental tutorial, we present
the annotation procedures, the annotation criterion, some
matters needing attention, and a running example. The
scoring criterion of the coincidence level is Consistency - Do
the usage scenarios describe the real functionalities of their
corresponding code samples? After they fully understand
this experimental tutorial, they are required to perform the
annotation. All the 〈usage scenario, code sample〉 tuples
for the selected API types are assigned to the volunteers
sequentially, and the volunteers independently evaluate
and score the coincidence levels between them. Similarly,

each tuple is scored by two volunteers independently on a
likert scale of 5 points [10], and the final score is obtained
by averaging the two individual scores. In addition, the
Weighted Kappa Agreement is also calculated to show the
agreements between volunteers.

RQ4: Can the ADECK-enriched API documentation
boost the productivity of developers?

Motivation. To investigate whether the ADECK-
enriched API documentation is helpful for developers to
resolve programming tasks, we set up this RQ.

Method. First, we invite 21 developers to participate in
the experiment, including 6 Ph.D. candidates and 15 master
students from Dalian University of Technology. Before
conducting the experiment, the developers are required to
complete a survey with four questions [37] to investigate
their time to start programming, their frequencies of re-
ferring to API documentation, their adept programming
languages, and their proficiency levels of Java SE APIs and
Android APIs. Based on their responses to the survey, we
divide the developers into three groups with similar or
equivalent programming skills.

Then, we provide the developers with an experimental
guideline introducing the related concepts and workflow to
help them understand the overall procedures of the exper-
iment. The developers are required to fully understand the
guideline before conducting the experiment. To motivate the
developers to attentively accomplish these programming
tasks, we set up an incentive mechanism. Developers will
win a prize (i.e., an USB flash disk), if they perform well in
completing the tasks.

Next, inspired by Kim et al. [10], Xie et al. [38], and Lin
et al. [39], we design three programming tasks according to
the following three criteria.
(1) The goals of the programming tasks should be intuitive

and easy to understand without ambiguity, so devel-
opers could focus on resolving the programming tasks
rather than comprehending them.

(2) The programming tasks should have different levels
of difficulties to distinguish different types of API
documentation.

(3) The programming tasks should be related to different
programming topics, so they can match different capa-
bilities of developers.
The same as Kim et al. [10], we follow three steps

to determine the programming tasks. First, we select the
API types which are illustrated by code samples in the
eXoaDocs-enriched and ADECK-enriched API documen-
tation but not in the raw API documentation, thus we
can know whether the enriched API documentation is
effective. In addition, we can also compare the eXoaDocs-
enriched API documentation and the ADECK-enriched API
documentation. Second, we search these API types in Java
tutorials and blogs to find their related programming tasks.
Third, the authors of this paper conduct some preliminary
programming tasks to decide whether they are suitable as
the final programming tasks. Through an open discussion,
we eventually determine the three programming tasks
under the three selection criteria.

The programming tasks are shown in Table 2. The first
programming task is easy and related to string processing,
which tries to split a string based on a specified character.
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TABLE 2
The designed programming tasks

Id 1 2 3

Programming task Split a text based on a specified character Read and print the source code of a webpage List the first menu when pressing the Ctrl key

Related topic String processing Network connection and interaction GUI design and implementation

Potentially Useful API java.util.String.Tokenizer java.net.URL.Connection javax.swing.JMenuBar

Test case

Test Input
class1=1\nclass2=2\nclass3=3\nclass4=4

\nclass1=5\nclass2=6\nclass3=7\nclass4=8
\nclass1=9\nclass2=10\nclass3=11\nclass4=12

http://global.bing.com/?FORM=HPCNEN
&setmkt= en-us&setlang=en-us

Run the program and press the Ctrl key

Expected
Output

class1: 1, 5, 9
class2: 2, 6, 10
class3: 3, 7, 11
class4:4, 8, 12

The source code of bing search The menus in the first menu bar are shown

Level of Difficulty easy moderate hard

The second programming task aims to obtain the source
code of a webpage, which is a moderate one related to
the network connection. The third programming task is
about GUI design to list the menus when receiving a
keyboard press. These programming tasks are coupled with
some potentially useful APIs. In addition, the same as
Kim et al. [10], we also provide a test case related to
each programming task for developers to verify whether
a programming task is correctly completed or not.

We follow the crossover design procedures to conduct
the experiment [40]. As shown in Table 3, developers are re-
quired to accomplish these programming tasks sequentially
with the help of different types of API documentation. For
example, the developers in Group 1 (G1) accomplish the first
programming task with the help of the raw API documen-
tation, the second programming task with the eXoaDocs-
enriched API documentation, and the third programming
task with the ADECK-enriched API documentation. In
contrast, the developers in Group 2 (G2) and Group 3
(G3) leverage different orders of API documentation to
resolve the same three programming tasks. The previous
task will not influence the subsequent one, since they
are independent and their completion time is calculated
separately. The crossover design brings two benefits [40].
On the one hand, the bias of different programming skills
of the developers on the experiment can be eliminated. On
the other hand, it is statistically efficient and requires fewer
developers.

When completing the programming tasks, the devel-
opers are not informed which type of API documentation
they use. Hence, the perceptions of developers will not
have an effect on the results. To better investigate the
effectiveness of different types of API documentation in
completing programming tasks, during the programming
process, the developers are not allowed to look up the
answers online. In such a way, they can only rely on
the assigned API documentation. The same as Lin et al.
[39] and Maalej et al. [41], we use screen capture tools
(i.e., Camtasia Studio in this study [42]) to record all the
programming behaviors of developers, since the recorded
videos make it easier for us to explicitly analyze the whole
programming process compared to the log analyzers [38].
The time to accomplish each task is limited to 30 minutes to

TABLE 3
The assigned API documentation for each developer group

Group Programming
task 1

Programming
task 2

Programming
task 3

G1 The raw API
documentation

The eXoaDocs
enriched API

documentation

The ADECK
enriched API

documentation

G2
The eXoaDocs
enriched API

documentation

The ADECK
enriched API

documentation

The raw API
documentation

G3
The ADECK
enriched API

documentation

The raw API
documentation

The eXoaDocs
enriched API

documentation

avoid endless programming. Developers are not allowed to
give up halfway until the programming time reaches to 30
minutes [10].

After the developers complete these programming tasks,
we analyze the recorded videos to obtain two evaluation
metrics, i.e., the task completion frequency and the average
completion time. By comparing the two metrics, we can
acquire whether the ADECK-enriched API documentation
can boost the productivity of developers.

At last, we conduct an interview with the developers to
investigate how the ADECK-enriched API documentation
helps them program. After finishing these programming
tasks, we explain to the developers why we conduct the
interview. We inform the developers the exact programming
task in which they use the ADECK-enriched API documen-
tation. According to their programming experience with
the ADECK-enriched API documentation, they are asked
three questions, i.e., “Whether the ADECK-enriched API
documentation is helpful in resolving programming tasks”,
“If the ADECK-enriched API documentation is helpful,
what are the reasons”, and “What suggestions would
you give to ADECK”. The interview is audio-recorded
and transcribed for further analysis. The interview could
give insights into the rationality and future directions for
ADECK.
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TABLE 4
Number of API types with code samples

API Documentation Java SE Android

# API Types in total 2,305 1,636

The raw API documentation # API types with code 263 104

The eXoaDocs-enriched
API documentation

# API types with code 1,283 812
# True positive APIs 880 675
True positive rate 68.59% 83.13%

The ADECK-enriched
API documentation

# API types with code 930 653
# True positive APIs 882 599
True positive rate 94.83% 91.73%

5 EXPERIMENTAL RESULTS

5.1 Investigation of RQ1

In this RQ, we present the quantity of the API types that
can be enriched by ADECK with code samples and usage
scenarios.

Result. Table 4 presents the number of API types
illustrated with code samples in the three types of API
documentation. As shown in Table 4, only 263 and 104
API types are illustrated with code samples in the raw
JavaD and AndroidD. In contrast, the number of code-
sample-illustrated API types reaches to 1,283 and 812 in
the eXoaDocs-enriched JavaD and AndroidD. In addition,
930 API types in the ADECK-enriched JavaD and 653 API
types in the ADECK-enriched AndroidD are illustrated by
code samples. Hence, the number of API types illustrated by
code samples is greatly improved in the eXoaDocs-enriched
and ADECK-enriched API documentation.

The manually validated results are also shown in Table 4.
We can see that ADECK achieves higher true positive rates
than eXoaDocs. For example, 880 and 675 API types are
identified as true positive API types, and the true positive
rates are 68.59% and 83.13% in the eXoaDocs-enriched
JavaD and AndroidD, respectively. In contrast, the ADECK-
enriched JavaD and AndroidD contain 882 and 599 true
positive API types, and their proportions account for 94.83%
and 91.73%, respectively. The number of true positive API
types in the ADECK-enriched JavaD and AndroidD are 3.35
and 5.76 times as many as the number of API types with
code samples in the raw JavaD and AndroidD.

We can see that eXoaDocs achieves a higher number of
true positive API types than ADECK, but the disparity is
not very big. For example, ADECK obtains two more true
positive API types than eXoaDocs in the enriched JavaD.
When considering AndroidD, there are 675 and 599 true
positive API types in the eXoaDocs-enriched AndroidD
and ADECK-enriched AndroidD, respectively. It means that
eXoaDocs achieves a higher Recall value than ADECK.
What is more, ADECK achieves higher true positive rates
than eXoaDocs. The reason may be that eXoaDocs only relies
on simple lexical matching by searching general code search
engines. As a result, even though plentiful code samples can
be obtained, these code samples often contain the steps to
run and configure a project or some command lines with
logs recording the runtime information, which are irrelevant
with API types. In contrast, ADECK employs an accurate
traceability linking method to link code samples with API

Fig. 6. Evaluation scores for Java SE and Android

types. Hence, the enriched code samples of ADECK are
highly likely to focus on API usages.

Furthermore, we also investigate the quantity of true
positive API types by combining eXoaDocs and ADECK.
Combining both eXoaDocs and ADECK to enrich API
documentation, the number of true positive API types
can be further improved, i.e., 1,209 for Java SE and 894
for Android. It means that more than 50% API types
can be truly covered. Hence, eXoaDocs and ADECK can
cooperate and complement each other to better enrich API
documentation.

Conclusion. The number of code-sample-illustrated API
types is greatly improved in the ADECK-enriched API doc-
umentation compared against the raw API documentation.
In addition, ADECK achieves higher true positive rates than
eXoaDocs.

5.2 Investigation of RQ2

In this subsection, we present the evaluation results of the
quality of the enriched code samples.

Result. Fig. 6 presents the average evaluation scores
on the quality of the code samples in the eXoaDocs-
enriched and ADECK-enriched API documentation. We
can see that the quality of code samples in the ADECK-
enriched API documentation is higher than that of code
samples in the eXoaDocs-enriched API documentation in
terms of correctness, conciseness, and usability. For example,
the average scores of the code samples in the ADECK-
enriched JavaD and AndroidD are 4.26 and 3.9 in terms of
correctness. In contrast, the values in the eXoaDocs-enriched
JavaD and AndroidD are only 3.28 and 3.71, respectively. In
terms of conciseness and usability, the code samples in the
ADECK-enriched API documentation also achieve higher
average scores than those code samples in the eXoaDocs-
enriched API documentation. In addition, the Weighted
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Fig. 7. Frequency histograms of coincidence level

Kappa Agreement between volunteers on evaluating code
samples is 0.57 showing a moderate agreement.

Moreover, we conduct paired Wilcoxon signed rank
test to explore the statistical significance of the difference
between the quality of the code samples in the eXoaDocs-
enriched API documentation and that of code samples in
the ADECK-enriched API documentation. We define the
following hypothesis:

H0: There is no significant difference between the quality
of the code samples in the eXoaDocs-enriched API docu-
mentation and that of code samples in the ADECK-enriched
API documentation.

In this study, the significance level is set to 5%. If the p-
value is less than the significance level, H0 is rejected and
there is a significant difference between the quality of the
code samples in the eXoaDocs-enriched API documentation
and that of code samples in the ADECK-enriched API
documentation. The p-values are {3.845e-08, 8.983e-09, and
7.135e-09} for Java SE and {0.04876, 5.933e-09, and 2.103e-
09} for Android in terms of correctness, conciseness, and
usability. All the p-values are lower than 0.05. Hence, H0

is rejected. It means that there is a significant difference
between the quality of the code samples in the eXoaDocs-
enriched API documentation and that of the code samples
in the ADECK-enriched API documentation.

The reason why ADECK achieves code samples with
a higher quality than eXoaDocs may be that, ADECK
combines questions with their best answers in Stack Over-
flow and selects the 〈Usage Scenario, Code Sample〉 tuples
with the highest user scores in the top-ranked clusters,
thus the quality of code samples is inevitably high. In
contrast, eXoaDocs obtains code samples from general code
search engine without a similar mechanism to guarantee the
quality of code samples.

Conclusion. There is a statistical difference between the
quality of the code samples in the eXoaDocs-enriched and
ADECK-enriched API documentation. ADECK achieves
code samples with higher quality than eXoaDocs.

5.3 Investigation of RQ3
In this RQ, we present the evaluation results of the coinci-
dence level between code samples and usage scenarios in
the ADECK-enriched API documentation.

Result. Fig. 7 shows the frequency histograms for the
scores with respect to the coincidence levels between usage
scenarios and code samples in the ADECK-enriched Java
SE and Android API documentation. Considering that the
eXoaDocs-enriched API documentation does not contain

usage scenarios, we only evaluate the ADECK-enriched
API documentation without comparison. As seen from the
figure, the distributions of the scores show inverted U
shape curves on the whole. The scores of the coincidence
level are distributed between 1.5 and 5. No less than 40
scores range from 3.5 to 4 in both the ADECK-enriched
JavaD and AndroidD, and this range takes up the largest
percentage. Whether the scope becomes either larger or
smaller, the corresponding number gradually decreases. The
average scores are 3.96 and 4.02 on a 5 points likert scale
in the ADECK-enriched JavaD and AndroidD, respectively.
It means that the code samples are relatively consistent
with the corresponding usage scenarios. The reason may
be that, a code sample and its corresponding usage scenario
are extracted from the same Q&A pair, in which the code
sample is specially designed for the usage scenario. In addi-
tion, the Weighted Kappa Agreement between volunteers on
evaluating the coincidence level is 0.50 showing a moderate
agreement.

Conclusion. The code samples are relatively consistent
with their corresponding usage scenarios in the ADECK-
enriched API documentation.

5.4 Investigation of RQ4

In this RQ, we compare different programming tasks,
developer groups, and API documentation in terms of
the task completion frequency and the average completion
time. In addition, similar as RQ2, we also conduct the
paired Wilcoxon signed rank test to explore whether the
programming tasks, the developer groups, and different
types of API documentation are statistically different.

5.4.1 Comparison between Different Tasks
Result. Fig. 8 shows the comparison results between
different programming tasks. In addition, we also present
asterisks and brackets on the bar chart (showing the
task completion frequency) and the line chart (showing
the completion time) to indicate there exits statistically
significant difference between the two corresponding
columns. We can see that the completion frequency of Task
1 is the largest, i.e., 19. Furthermore, the average completion
time of Task 1 is the shortest (16.99 minutes) among all the
three tasks. Hence, it is coincident with Table 2 showing
that Task 1 is the easiest one to complete. In contrast, the
completion frequency of Task 3 is the smallest, i.e., 10,
and its average completion time is the longest, i.e., 23.58
minutes. It means that Task 3 is the hardest one. In addition,
since the average completion time is less than 25 minutes
for all the tasks, the 30 minutes completion time limit is
within a feasible and reasonable range.

Fig. 8 also presents the results of the paired Wilcoxon
signed rank test. We can find that there are statistically
significant differences between Task 1 and Task 2 and
between Task 1 and Task 3 in terms of the task completion
frequency. In addition, from the perspective of the task
completion time, each pair of the three tasks is significantly
different.

Conclusion. The task completion frequency and the
average completion time are consistent with the levels of
difficulties of the programming tasks.
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5.4.2 Comparison between Different Groups

Result. Fig. 9 shows the comparison results between
different developer groups in terms of the task completion
frequency and the average completion time. The task
completion frequencies of the three groups are similar, i.e.,
14, 14, and 15, respectively. From the perspective of the
average completion time, the three groups take 19.25, 20.88,
and 19.97 minutes, respectively, in which the divergence
is less than 2 minutes. That is to say, similar results are
achieved in the three developer groups, which confirms
the validity of our grouping strategy. This is because
before conducting the experiment, we carry out a survey to
investigate their programming skills. Through the survey,
we can know their proficiency levels in Java SE APIs so
as to divide them into groups with similar programming
skills.

We also investigate whether there is statistically signifi-
cant difference between each pair of the developer groups in
terms of the task completion frequency and the completion
time. We find that all of the p-values are larger than
0.05, which means that the three developer groups are
not significantly different. Hence, there is no asterisk and
bracket to indicate the difference between the developer
groups in Fig. 9.

Conclusion. The developers are relatively evenly dis-
tributed into groups with similar programming skills.

5.4.3 Comparison between Different Types of API Docu-
mentation

Result. Fig. 10 shows the comparison results between
different types of API documentation. Similarly, we employ
asterisks and brackets to indicate whether there are signif-
icant differences between different types of API documen-
tation. We can see that the task completion frequency of
the raw API documentation is the least, i.e., 12. In contrast,
the task completion frequencies of the eXoaDocs-enriched
and ADECK-enriched API documentation are 14 and 17,
respectively. In addition, the average completion time of
the eXoaDocs-enriched API documentation is the longest.
i.e., 21.30 minutes. Whereas, the average completion time
of the raw API documentation and the ADECK-enriched
API documentation are 20.82 minutes and 17.99 minutes,
respectively. The disparity of the average completion time
between the raw API documentation and the eXoaDocs-
enriched API documentation is trivial, i.e., 0.48 minute.
By examining the videos recorded by the screen capture
tool, we find that developers tend to spend more time

on reading and changing the code samples given in the
eXoaDocs-enriched API documentation, which may prolong
the completion time.

When focusing on the eXoaDocs-enriched and ADECK-
enriched API documentation, we note that developers are
able to accomplish more programming tasks within less
average time with the help of the ADECK-enriched API
documentation than utilizing the eXoaDocs-enriched API
documentation. For instance, the task completion frequency
of the ADECK-enriched API documentation is 17, whereas
it is only 14 for the eXoaDocs-enriched API documentation.
It means that additional 3 developers (14.29% in the in-
vited 21 developers) are successfully helped. Furthermore,
the average completion time of the ADECK-enriched API
documentation is 17.99 minutes, while it is 21.30 minutes for
the eXoaDocs-enriched API documentation. It implies that
with the help of the ADECK-enriched API documentation,
developers shorten the completion time by 11.03% in a time
frame of 30 minutes compared to the eXoaDocs-enriched
API documentation.

In terms of the results of the paired Wilcoxon signed
rank test, we can find that the developers with the raw API
documentation are statistically different with the developers
with the ADECK-enriched API documentation in terms of
the task completion frequency and the completion time.
In addition, the developers with the eXoaDocs-enriched
API documentation are significantly different with the
developers with the ADECK-enriched API documentation
in terms of the completion time. Considering that the
developers using the ADECK-enriched API documentation
can complete more programming tasks within less time than
those using the raw API documentation and those using
the eXoaDocs-enriched API documentation, we can say that
leveraging the ADECK-enriched API documentation could
boost the productivity of developers.

Conclusion. Using the ADECK-enriched API documen-
tation, developers can complete more programming tasks
with less time than using the eXoaDocs-enriched API
documentation.

5.4.4 Post Study Interview
We interview developers with three questions after they
finish their programming tasks. We transcribe the interview
audio record into text. To better understand the reasons
and the suggestions from the developers, we conduct a
thematic analysis on the interview responses. The thematic
analysis tries to identify themes or patterns by grouping
the responses. As described by Coelho et al. [43] and Silva
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et al. [44], the thematic analysis consists of four steps:
(1) scanning and getting familiar with the responses. (2)
generating initial themes from the responses. (3) reviewing
and refining the generated themes. (4) defining the final
themes. The thematic analysis is conducted by two authors.
If there is a conflict between the two authors in generating
the final themes, they discuss it to reach an agreement.

For the first question, all the 21 developers (100%)
confirm that the ADECK-enriched API documentation is
helpful for resolving programming tasks. For the second
question related to the reasons why ADECK works, de-
velopers provide their comments. We obtain three reasons
why the ADECK-enriched API documentation works. (1)
The maps between code samples and usage scenarios are
helpful. 12 developers agree with this reason. As one
developer mentions, “ADECK adds additional code samples
into API documentation. Most importantly, the code samples are
mapped to their usage scenarios. They are helpful for resolving
some programming tasks”. (2) The organization is clear. 5
developers confirm this reason. As one developer says,
“The organization of the enriched API documentation is clear.
It is convenient to point out the usage scenarios for code
samples”. (3) The quality of the code samples is relatively
high. 4 developers agree with this reason. As a developer
states, “The quality of the code samples in the enriched API
documentation is high. I can easily adapt the code samples to my
programming context”. As for the third question, 9 developers
provide their suggestions. These suggestions can be roughly
divided into two themes. (1) More explanations are needed.
6 developers make such a suggestion. As one developer
says, “Provide more explanations on the code samples”. (2)
Pointing out the versions of APIs. 3 developers confirm this
suggestion. As a developer mentions, “It could be better if
ADECK can identify the versions of the invoked APIs”. These
suggestions motivate us to further improve ADECK in the
future.

6 THREATS TO VALIDITY

6.1 Threats to Internal Validity
First, one potential threat to internal validity is the selection
of APIs in RQ2. Sampling different APIs will result in
different evaluations of ADECK. To mitigate this threat,
we choose the commonly used APIs to evaluate, since
they can help developers resolve more programming tasks.
Second, one potential threat is the human evaluation. The
authors of this paper manually evaluate and identify the
true positive APIs in RQ1. We employ the double check
mechanism to mitigate this threat. We recruit 8 volunteers
to evaluate the quality of code samples and the coincidence
level between usage scenarios and code samples in RQ2. To
obtain consistent evaluations, we provide some evaluation
criteria for the volunteers. In addition, each code sample
and the coincidence level are evaluated by two volunteers
independently and the final score synthesizes the scores
from two volunteers. In such a way, we can reduce the
threats as much as possible. We invite 21 developers
to participate in RQ3. To avoid introducing biases, we
introduce the crossover design to conduct the experiment,
which can reduce the influence of different programming
skills of the developers. Third, the re-implementation of

eXoaDocs may be not exactly the same as the original, which
is also a potential threat. We implement eXoaDocs based
on the Google search engine rather than the Google code
search engine, since the service of the Google code search
engine has been discontinued. We employ the code review
process to guarantee the quality of the implementation.
Finally, the selection of the programming tasks may be
another potential threat. In the future, we will employ more
programming tasks to further evaluate ADECK.

6.2 Threats to External Validity

ADECK is limited by the code sample sources of forums
like Stack Overflow, in which millions of developers scan
and search their desired information to learn API usages.
If no Q&A pair in Stack overflow discusses a certain API,
it would be impossible for ADECK to extract code samples
with usage scenarios for it. In contrast, if there are more
related Q&A pairs in Stack Overflow discussing an API,
ADECK performs better on this API. Hence, ADECK may
work better on more-common APIs, since there are likely to
be more related Q&A pairs in Stack Overflow. Along with
the rapid growth of Q&A pairs in Stack Overflow, ADECK
has, without doubt, a great potential in obtaining high-
quality code samples with their usage scenarios for more
APIs.

We verify ADECK on JavaD and AndroidD without
testing other API documentation, and the generalization
of ADECK may be an external threat. JavaD is relatively
mature and well-established, and has been applied to many
areas. AndroidD is relatively new attracting a growing
number of developers, and can be applied to mobile
application development. Hence, they are representative to
verify ADECK. The effectiveness of ADECK on other API
documentation (e.g., C# API documentation in MSDN) is
still unknown. In the future, we attempt to validate ADECK
to enrich other API documentation with code samples and
usage scenarios.

7 RELATED WORK

7.1 API Documentation Analysis

There are a lot of research tasks focusing on API documen-
tation. In this study, we pay attention to two closely related
tasks, i.e., API documentation enrichment and content
comprehension.

API documentation enrichment aims to augment API
documentation with pieces of information. Treude et al. try
to augment API documentation with insightful sentences
in Stack Overflow [1]. Wu et al. propose CoDocent to trace
relevant API documentation with fully-qualified APIs to
help developers understand code [4]. Hoffman et al. enrich
API documentation by executable test cases with expected
output [45]. Stylos et al. develop a tool Jadeite to help
developers discover and instantiate the correct APIs [46].
Subramanian et al. identify and link API elements in code
snippets to API documentation [47]. In addition, Chen and
Zhang propose a prototype to integrate crowdsourced FAQs
into API documentation [11]. However, none of them enrich
API documentation by code samples with usage scenarios,
thus motivating us to propose ADECK.
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Content comprehension aims to find important infor-
mation in API documentation. Maalej et al. first analyze
the knowledge patterns in API documentation [41]. Kumar
et al. [48] automatically categorize the knowledge in API
documentation based on the taxonomy in [41]. Monperrus
et al. empirically study a specific category, namely directive,
and propose a taxonomy containing 23 kinds of directives
[49]. Zhong et al. try to detect errors in API documentation
[50]. All the content comprehension studies only analyze
the existing content in API documentation, whereas ADECK
attempts to enrich the content of API documentation.

7.2 Mining Stack Overflow

Stack Overflow assembles crowd knowledge from millions
of developers, and a lot of research tasks are proposed
around it. Studies on mining Stack Overflow could be
roughly divided into two categories, i.e., item prediction
and knowledge utilization.

There are many items in the Q&A pairs in Stack
Overflow, including user score, tag, favorite number, etc.
It would be more convenient if these items can be predicted
automatically. Lezina et al. build a classifier to predict
whether a new question will be closed in the future [51].
Stanley et al. develop a Bayesian probabilistic model ACT-
R to predict tags for new posts [52]. Choetkiertikul et al.
predict the potential answerers for new questions [53].

The crowd knowledge in Stack Overflow can also be
utilized by the other research tasks. Ponzanelli et al. use
the knowledge in Stack Overflow to help developers com-
prehend and develop software [54]. Gao et al. fix recurring
crash bugs by analyzing Q&A pairs [29]. Jiang et al. employ
API related Q&A pairs as new features to discover relevant
tutorial fragments [16].

Our study belongs to the category of knowledge uti-
lization. Unlike the existing studies, ADECK tries to obtain
high-quality code samples with usage scenarios from Stack
Overflow and further embed them into API documentation.

7.3 API and Code Sample Recommendation

APIs play an important role in software development.
Hence, there are a lot of studies in the literature focusing
on mining and recommending APIs for developers. Gu et al.
propose DeepAPI, a deep learning approach to generate API
usage sequences for a natural language query [55]. Huang
et al. propose BIKER that leverages Stack Overflow posts to
obtain candidate APIs for a given programming task [56].
Xie et al. propose MAPO to generate API patterns by mining
and ranking API sequence pattern clusters [57]. In addition,
Wang et al. propose UP-Miner to further improve MAPO by
mining succinct and high-coverage API usage patterns [58].

In addition to recommending APIs, researchers also try
to recommend code samples for developers to help them
resolve programming tasks. McMillan et al. design Portfolio
to generate relevant C/C++ functions for a code search
query [59], and Chan et al. further employ a graph search
approach to improve Portfolio [60]. Liu et al. propose a
web based tool CodeNuance to support code search with
differencing and visualization [61]. In addition, Zhang et
al. develop an automatic tool named BDA to recommend

code samples mined from public software repositories and
webpages [62].

These studies try to either recommend APIs or code
samples for developers. In contrast, our study tries to enrich
API documentation with code samples and usage scenarios
to perform knowledge collaboration.

8 CONCLUSION AND FUTURE WORK

Code samples with usage scenarios are extremely scarce in
API documentation. It would be ideal if they can be en-
riched into API documentation automatically. Even though
eXoaDocs is proposed to enrich API documentation, it can-
not tackle the quality challenge and the mapping challenge.
In this study, we propose a new approach named ADECK
to enrich API documentation by code samples with usage
scenarios from Stack Overflow. We show that the number of
code-sample-illustrated API types in the ADECK-enriched
API documentation is up to 5.76 times as many as that in
the raw API documentation. In addition, the quality of code
samples obtained by ADECK statistically outperforms the
quality of code samples obtained by eXoaDocs. Developers
using the ADECK-enriched documentation are 11.03% faster
in terms of the average completion time and complete
14.29% more programming tasks than using the eXoaDocs-
enriched API documentation.

For the future work, we have the following directions.
First, we plan to introduce other API documentation to
validate ADECK. Second, we try to consider the suggestions
provided by the developers in the interview to further
improve ADECK. Third, we intend to develop and release
an automated tool encapsulating ADECK.
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