
DeepDir: A Deep Learning Approach for API Directive Detection

Zhang Jingxuan, Jiang He, Lu Shuai, Li Ge and Chen Xin

Citation: SCIENCE CHINA Information Sciences; doi: 10.1007/s11432-019-1520-6

View online: http://engine.scichina.com/doi/10.1007/s11432-019-1520-6

Published by the Science China Press

Articles you may be interested in

A Hybrid Malware Detection Approach with Feedback-directed Machine Learning
SCIENCE CHINA Information Sciences

Deep learning for scene text detection and recognition
SCIENTIA SINICA Informationis 48, 531 (2018);

Deep learning for steganalysis based on filter diversity selection
SCIENCE CHINA Information Sciences 61, 129105 (2018);

Deep Forest as a framework for a new class of machine-learning models
National Science Review 6, 186 (2019);

A deep learning “ticket” for single-molecule analysis of protein stoichiometry
SCIENCE CHINA Chemistry 62, 1269 (2019);

http://engine.scichina.com/publisher/scp/journal/SCIS
http://engine.scichina.com/search/search?fullnameFilter=Zhang%20Jingxuan
http://engine.scichina.com/search/search?fullnameFilter=Jiang%20He
http://engine.scichina.com/search/search?fullnameFilter=Lu%20Shuai
http://engine.scichina.com/search/search?fullnameFilter=Li%20Ge
http://engine.scichina.com/search/search?fullnameFilter=Chen%20Xin
http://engine.scichina.com/publisher/scp/journal/SCIS
http://engine.scichina.com/doi/10.1007/s11432-019-1520-6
http://engine.scichina.com/publisher/scp
http://engine.scichina.com/doi/10.1007/s11432-018-9615-8
http://engine.scichina.com/doi/10.1360/N112018-00003
http://engine.scichina.com/doi/10.1007/s11432-018-9640-7
http://engine.scichina.com/doi/10.1093/nsr/nwy151
http://engine.scichina.com/doi/10.1007/s11426-019-9522-9

SCIENCE CHINA
Information Sciences

. LETTER .

DeepDir: A Deep Learning Approach for API
Directive Detection

Jingxuan Zhang1,2,3*, He Jiang4, Shuai Lu5, Ge Li5 & Xin Chen3,6

1Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
2State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China;

3Key Laboratory of Complex Systems Modeling and Simulation, Ministry of Education, Hangzhou 310018, China;
4Dalian University of Technology, Dalian 116024, China;

5Peking University, Beijing 100871, China;
6Hangzhou Dianzi University, Hangzhou 310018, China

Citation Jingxuan Zhang, He Jiang, Shuai Lu, Ge Li, and Xin Chen. DeepDir: A Deep Learning Approach for

API Directive Detection. Sci China Inf Sci, for review

Dear editor,
Software developers tend to reuse existing libraries
to facilitate their development process and
implement certain functionalities by invoking
Application Programming Interfaces (APIs) [1].
However, it remains a challenging task for
developers to correctly use APIs [2], so they
often consult API learning resources [3, 4].
As one of the most important API learning
resources, API specifications (also known as API
references) detail the instructions on legal API
usages with different types of knowledge [1],
e.g., functionalities, concepts, and code samples.
Out of these knowledge types, developers should
particularly pay attention to API directives, i.e.,
the natural language statements to describe clear
constraints or guidelines that developers should be
aware of when programming with APIs [5]. Once
API directives are neglected, fatal development
and performance bugs may be easily produced in
programming. Hence, it could be ideal if API
directives can be automatically detected.

In the literature, Monperrus et al. propose
an approach to resolve the task of automatically
detecting API directives in API specifications by
leveraging a set of syntactic patterns [5]. However,
this approach simply treats API specifications as
bags-of-words and lacks a deep semantic under-
standing of API specifications. The drawbacks

of the bags-of-words assumption in the existing
approach motivate us to shift our attention to deep
learning models. Deep learning models can obtain
a deep understanding of high-level semantics for
natural language in two aspects. On the one hand,
they can learn the distributional representations
of words. Two words with similar semantics are
close to each other in the semantic space, so they
have a similar effect on deep learning models [6].
On the other hand, deep learning models can
distinguish semantic differences between sentences
with different word sequences. Hence, sentences
with similar word sequences usually achieve similar
results in deep learning models.

In this paper, we propose DeepDir, a deep
learning approach to automatically detect API
directives in API specifications. Fig. 1 shows the
workflow of DeepDir. It consists of two phases, i.e.,
the training phase and the prediction phase [7].
The training phase trains a Bi-LSTM network to
learn the semantic differences between directives
and non-directives. The prediction phase utilizes
the trained Bi-LSTM network to predict whether
a new sentence is a directive or not. We detail the
two phases as follows.

(1) The Training Phase. First, given a training
set and a validation set, we over sample API
directives to make their proportion to be 50%.
According to our statistics, API directives are

* Corresponding author (email: jxzhang@nuaa.edu.cn)

Acc
ep

te
d

Downloaded to IP: 192.168.0.213 On: 2019-11-08 09:37:15 http://engine.scichina.com/doi/10.1007/s11432-019-1520-6

Jingxuan Zhang, et al. Sci China Inf Sci 2

Figure 1 The workflow of DeepDir

extremely scarce in API specifications. For
example, API directives only take up 4.87%,
6.62%, and 11.89% in the Java, JFace, and com-
mons.collections API specifications respectively.
By employing the over sampling strategy, API
directives are fully exposed and DeepDir will not
be overwhelmed by non-directives.

Then, each word in a sentence in the training set
is embedded as a vector illustrating its distribu-
tional representation. The word embedding layer
maps each word into an equally sized vector in
the continuous vector space and the words sharing
similar context are close to each other [8]. In
this study, the words in each sentence are mapped
into vectors with 150 dimensions by default. The
value of each dimension is randomly initialized
in the range of 0 to 1. The word vectors are
trained together with the Bi-LSTM network. This
procedure brings two benefits. First. there is no
need to manually search for specific text corpora
to train the vectors for the words, so it can
save a lot of human efforts. Second, the word
vectors are trained based on the API specification
corpus, so they can better reflect the meaning
and semantic of the words in API specifications.
Therefore, along with the training of the Bi-LSTM
network, the word vectors can be also learned
simultaneously. Furthermore, the sentences in the
training set are accordingly embedded into vector
sequences, which are regarded as the inputs of the
Bi-LSTM network.

Next, after word vectors are initialized, the
vector sequences are input into two LSTM layers
for learning in both the forward and backward
directions. The two LSTM layers exploit the
previous and future context regarding the current
position, and learn the semantic differences
between directives and non-directives from two
directions. The two LSTM layers consist of a set

of LSTM units. Each LSTM unit contains four
main components, i.e., an input gate, a forget
gate, an output gate, and a recurrent connection
storing the state of the LSTM unit. Specifically,
the input gate controls the new information to be
stored in the LSTM unit, and the output gate
decides the information the LSTM unit needs to
output. Meanwhile, the forget gate chooses what
information will be discarded from the state of the
LSTM unit. The recurrent connection passes the
information from the previous to the future.

Specifically, for a given sentence s (with
length L) in an API specification, Let s =
(wI1 , wI2 , . . . , wIL), where wIt denotes the Itth
word in the vocabulary. The forward LSTM unit
takes the sequence < xI1 , xI2 , . . . , xIL > as input,
where xIt ∈ Rd is the embedded vector of the
Itth word of the sentence. The equations for the
forward pass of a LSTM unit are calculated as
follows.

ft = σ(WfxIt + Ufht−1 + bf) (1)

it = σ(WixIt + Uiht−1 + bi) (2)

ot = σ(WoxIt + Uoht−1 + bo) (3)

ct = ft ◦ ct−1 + it ◦ σ(Wcxt + Ucht−1 + bc) (4)

ht = ot ◦ σ(ct) (5)

where ft, it, ot, ct, and ht ∈ Rh (1 6 t 6
L) are forget gate vectors, input gate vectors,
output gate vectors, cell state vectors, and output
vectors respectively. The weight matrices and the
bias vector parameters {Wf ,Wi,Wo} ⊆ Rh×d,
{Uf , Ui, Uo} ⊆ Rh×h, and {bf , bi, bo} ⊆ Rh

need to be learned during the training phase.
In addition, the embedded vectors of the total
words in the vocabulary {x1, x2, . . . , xV } are
also determined during training. Similarly, the

Acc
ep

te
d

Downloaded to IP: 192.168.0.213 On: 2019-11-08 09:37:15 http://engine.scichina.com/doi/10.1007/s11432-019-1520-6

Jingxuan Zhang, et al. Sci China Inf Sci 3

backward LSTM unit takes the sequence <
xIL , xIL−1

, . . . , xI1 > as input and outputs <

h
′

1, h
′

2, . . . , h
′

L >.
Finally, The fully connected layer receives the

last outputs of the forward and backward LSTM
units. Formally, the outputs of the fully connected
layer are calculated as follows.

z = σ(Wfull[hL;h
′

L] + bfull) (6)

where z ∈ RK , Wfull ∈ RK×2h and bfull ∈ RK

are the weight matrices and the bias vector param-
eters to be learned. The softmax layer is stacked
to turn the outputs into probabilities of classes.
For class labels {class1, class2, . . . , classK}, the
probability of s belongs to the jth class is
calculated by the following softmax function.

p(labels = classj) =
ezj∑K
k=1 e

zk
(7)

By minimizing the loss function in the training
set, the Bi-LSTM network can be fully trained. We
optimize the loss function by gradient descendant.
In this paper, we employ the cross entropy as the
loss function, which can be calculated as follows.

L =
1

M

M∑
i=1

−(yi′log(yi)+(1−yi′)log(1−yi)) (8)

where M is the number of sentences in the training
set. In DeepDir, the class labels are {Directive,
Non-Directive}. For a sentence si, if labelsi =
Directive, yi′ = 1. Otherwise, yi′ = 0. In
addition, yi = p(labelsi = Directive).

DeepDir is validated on the validation set by
F-Measure in every 100 minibatches to evaluate
its performance and avoid over-fitting. We select
the model that achieves the best results on the
validation set as the final model.

(2) The Prediction Phase. After the Bi-LSTM
network is fully trained, it can be used to predict
whether a new sentence in an API specification
is an API directive or not. In the same way as
the training phase, the sentence is first embedded
into a word vector sequence. Then, the trained Bi-
LSTM network receives the word vector sequence
and outputs whether this new sentence is a
directive or non-directive.

Results. We conduct some experiments to
validate the effectiveness of DeepDir over an
annotated API directive corpus with more than 85
thousand sentences from three API specifications,
i.e., the Java, JFace, and commons.collections
API specifications. We employ the approach
proposed by Monperrus et al. as the baseline to
compare [5]. The experimental results reveal that
DeepDir is superior to the baseline approach in

terms of all the evaluation metrics. For example,
the baseline approach only achieves an average
Precision of 31.10%. In contrast, DeepDir can
achieve an average Precision of 51.62%. The
average improvement of DeepDir against the
baseline approach is 20.52%. In terms of the
average Recall, the baseline approach achieves
73.21%. Meanwhile, DeepDir achieves 80.90%.
From the perspective of the average F-Measure,
the baseline approach only obtains 41.42%. In
contrast, DeepDir can reach to 62.20%. On
average, DeepDir improves the baseline approach
by 20.78% in terms of F-Measure. Hence, DeepDir
significantly improves the performance of API
directive detection compared against the baseline
approach.

Conclusion. API directive is one of the
most important knowledge in API specifications.
Existing approach only relies on syntactic patterns
to detect API directives and lacks a deep semantic
understanding. In this study, we propose a deep
learning approach DeepDir to automatically detect
API directives. Experimental results show that
DeepDir significantly improves the state-of-the-art
approach by 20.78% on average in terms of F-
Measure.

Acknowledgements This work is partially supported by

the National Key Research and Development Plan of China

under Grants No. 2018YFB1003900.

References

1 Maalej W, Robillard M P. Patterns of knowledge in
api reference documentation. IEEE Transactions on
Software Engineering, 2013, 39: 1264-1283

2 Jiang H, Zhang J X, Ren Z L, Zhang T. An un-
supervised approach for discovering relevant tutorial
fragments for apis. In: Proceedings of the 39th
International Conference on Software Engineering
(ICSE 17), 2017. 38-48

3 Huang Q, Xia X, Xing Z C, Lo D, Wang X Y.
API method recommendation without worrying about
the task-API knowledge gap. In: Proceedings of
the International Conference on Automated Software
Engineering (ASE 18), 2018. 293-304

4 Robillard M P, Chhetri Y B. Recommending reference
api documentation. Empirical Software Engineering,
2015, 20: 1558-1586

5 Monperrus M, Eichberg M, Tekes E, et al. What
should developers be aware of? an empirical study
on the directives of api documentation. Empirical
Software Engineering, 2012, 17: 703-737

6 Hu X, Li G, Xia X, et al. Deep code comment
generation. In: Proceedings of the IEEE International
Conference on Program Comprehension (ICPC 18),
2018. 200-210

7 Chen X, Jiang H, Chen Z Y, He T K, Nie L
M. Automatic test report augmentation to assist
crowdsourced testing. Frontiers of Computer Science,
2019, 13 (5): 943-959

8 Li X C, Jiang H, Kamei Y, Chen X. Bridging
semantic gaps between natural languages and APIs
with word embedding. IEEE Transactions on Software
Engineering, to appear

Acc
ep

te
d

Downloaded to IP: 192.168.0.213 On: 2019-11-08 09:37:15 http://engine.scichina.com/doi/10.1007/s11432-019-1520-6

