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Abstract Bug reports are widely employed to facilitate software tasks in software maintenance. Since bug

reports are contributed by people, the authorship characteristics of contributors may heavily impact the perfor-

mance of resolving software tasks. Poorly written bug reports may delay developers when fixing bugs. However,

no in-depth investigation has been conducted over the authorship characteristics. In this study, we first leverage

byte-level N-grams to model the authorship characteristics and employ Normalized Simplified Profile Intersec-

tion (NSPI) to identify the similarity of the authorship characteristics. Then, we investigate a series of properties

related to contributors’ authorship characteristics, including the evolvement over time and the variation among

distinct products in open source projects. Moreover, we show how to leverage the authorship characteristics to

facilitate a well-known task in software maintenance, namely Bug Report Summarization (BRS). Experiments

on open source projects validate that incorporating the authorship characteristics can effectively improve a state-

of-the-art method in BRS. Our findings suggest that contributors should retain stable authorship characteristics

and the authorship characteristics can assist in resolving software tasks.
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1 Introduction

Recent years have witnessed the growing interests from the society of software engineering in Mining Bug

Repositories (MBR) to improve software quality. As stated in [1], more than 45% efforts have been spent

over software maintenance to fix bugs. To store and manage increasing number of bugs, many software

projects employ bug repositories (also known as bug tracking systems) in software maintenance. Up

to May, 2014, a well-known bug repository, namely Bugzilla, has been publicly used by 148 companies,

organizations, and projects, including Mozilla, Eclipse, Gnome, and GCC. In addition, there may also

exist at least 10 times as many private Bugzilla installations (see http://www.bugzilla.org/installation-

list/). Facing vast bug reports in bug repositories, many researchers investigate how to assist software

tasks by MBR. Some typical tasks include bug triage [2,3], fault prediction [4,5], bug location [6,7], and
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BRS [8–10]. To resolve software tasks, researchers usually leverage the contents of bug reports to extract

valuable knowledge. For example, a triager needs to understand a bug report well to find a potential

developer for fixing this bug [2]. Meanwhile, when a developer fixes a bug, he/she often needs to trace

historical bug reports to locate the root cause of this bug [7].

Since bug reports are initialized and updated by people (in this study, we refer to these people as

contributors), the authorship characteristics (e.g., the richness of vocabulary, the layout, the length of

text) of contributors may heavily impact the performance of resolving software tasks. Intuitively, a messy

bug report attracts less attention (comments) than a well-structured one, and might be delayed to fix.

As to our statistical results, from Jan. 1, 2003 to Dec. 31, 2012, each fixed bug in Mozilla has 10.8

comments on average while an unfixed bug has only 5.9 comments. In [11], Zimmermann et al. find

that “developers are slowed down by poorly written bug reports”. However, as to our knowledge, no

systematic investigation has been conducted on the authorship characteristics of contributors.

In this study, we show our attempts towards mining the authorship characteristics in bug repositories.

First, we model the authorship characteristics with an effective approach, namely byte-level N -grams,

which is well-used in authorship attribution [12] and software forensics [13]. Meanwhile, we employ

Normalized Simplified Profile Intersection (NSPI) to identify the similarity between the authorship char-

acteristics. Based on these approaches, we address a series of Research Questions (RQs) with experiments

conducted over two open source projects, namely Eclipse and Mozilla. We find that, in terms of NSPI,

a fraction of contributors retain relative stable authorship characteristics. Their bug reports are more

likely to be fixed than other contributors whose authorship characteristics vary sharply over time. In

addition, the authorship characteristics of active contributors slightly change among distinct products in

open source projects. Furthermore, we employ the authorship characteristics to facilitate a typical task

in software maintenance, namely BRS. A new framework named Authorship Characteristics based Sum-

marization (ACS) is proposed and evaluated over two corpora of annotated bug reports. Experiments

show that incorporating the authorship characteristics can effectively improve the resulting summaries.

The main contributions of this paper are as follows:

• We model the authorship characteristics of contributors in bug repositories based on the method

of byte-level N -grams and evaluate the similarity between the authorship characteristics with NSPI. As

to our knowledge, this is the first work to model the authorship characteristics of contributors in bug

repositories.

• We find that a fraction of contributors’ authorship characteristics in open source bug repositories

are relatively stable along time and their bugs are more likely to be fixed. In addition, the authorship

characteristics of active contributors vary slightly among distinct products.

• We leverage the authorship characteristics to assist the software tasks in bug repositories. Taking

BRS as an example, we design a new framework named ACS.

• We create a new corpus of 96 annotated bug reports from 4 open source projects, namely Eclipse,

Mozilla, KDE, and Gnome. The new corpus is publicly available for BRS.

2 Background & motivation

2.1 Reports in bug repositories

Nowadays, bug repositories are widely used in software projects to store and manage bug reports. Along

with the development of software projects, these bug repositories contain tremendous bug reports. For

example, up to May 1, 2014, Bugzilla has managed over 434000 and 1004000 bug reports for Eclipse

and Mozilla, respectively. When a bug is found, a bug report is initialized by a contributor to describe

its details, e.g., its related product, component, severity, and version, and the description to reproduce

this bug. In bug repositories, a bug could be a defect, a new feature, an update to documentation, or a

refactoring (see [14] for more details). After a bug report is initialized, other contributors could update

this bug report with comments. In this study, when someone initializes or updates a bug report, we state

that he/she contributes to this bug.
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Figure 1 (Color online) Illustration of a bug report of Mozilla. (a) Items of bug 312001 of Mozilla; (b) description and

comments of bug 312001 of Mozilla.

Figure 1 exhibits a bug report of Mozilla, namely Bug 312001. As shown in Figure 1, a contributor

named Darin Fisher initialized a bug report about ensuring a correctly functioning auto update system

for Firefox 1.5 on Oct.10, 2005. Darin Fisher presented the detailed description of this bug that “This

bug is about ensuring · · · . This bug is about ensuring that we cover all these bases before shipping 1.5”.

In addition, Darin Fisher also specified some related items of this bug, including product, component,

and target milestone. Along the progress of fixing this bug, the item status may change accordingly.

After Darin Fisher submitted Bug 312001, totally 21 comments have been conducted over Bug 312001

by 9 contributors. In Figure 1, we only display a part of the comments. Interestingly, Darin Fisher also

contributed 6 comments.

2.2 Motivation

Since developers in actual software development process need to understand the contents of bug re-

ports to resolve software tasks, the authorship characteristics of contributors may greatly impact the

performance of resolving software tasks. A poorly written bug report is hard to comprehend and pro-

cess [11]. As shown in Table 2 of [11], 34% and 26% of developers complain that bug reports suffer

from unstructured text and too long text by contributors, respectively. Developers are more likely to pay

attention to well-written bug reports than poorly-written ones. In some popular question and answer

websites, some people often complain that poorly-written bug reports are hard to fix and verify. For

example, in StackExchange, Dzieciou complains that “Fixes hard to verify because of poor quality bug

reports” (see http://sqa.stackexchange.com/questions/6841/fixes-hard-to-verify-because-of-poor-quality-

bug-reports?rq=1). However, as to our knowledge, no in-depth investigation has been performed on the

authorship characteristics of contributors.

In contrast, some researchers in software maintenance investigate code ownership, a conception similar

to the authorship characteristics, and achieve great success. Code ownership is the process of finding

the proper developers who take responsibility of some software components. Rahman and Devanbu [15]

exploit a modern version control system to examine the impact of code ownership and developer experience

on software quality for open source projects. They find that implicated code is more strongly related to

a single developer’s contribution. Bird et al. [16] examine the relationship between different ownership

measures and software failures in commercial software projects, namely Windows Vista and Windows 7.

Bird et al. find that measures of ownership are related to both pre-release faults and post-release failures.

Inspired by the research of code ownership, we argue that the authorship characteristics of contributors

may influence the process of resolving software task in bug repositories.

Based on the above considerations, we examine the authorship characteristics of contributors in bug

repositories. In this study, we employ byte-level N -grams to model the authorship characteristics. With
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this approach, we investigate a series of Research Questions (RQs) related to the authorship character-

istics.

RQ1: How contributors’ authorship characteristics evolve over time? In this study, we conduct exper-

iments on two open source projects to investigate whether contributors’ authorship characteristics are

stable over time or not.

RQ2: Do contributors’ authorship characteristics change among distinct products? For this question,

we examine the change of active contributors’ authorship characteristics among several products in open

source projects.

RQ3: How can we employ the authorship characteristics to enhance existing software tasks in bug

repositories? In RQ3, we investigate how to incorporate the authorship characteristics to improve the

performance of BRS, a typical task in bug repositories.

3 Authorship characteristics

In this section, we employ byte-level N -grams to model the authorship characteristics in Subsection 3.1.

Then, we investigate the answers to RQ1 and RQ2, by conducting some empirical analysis on two open

source projects, namely Eclipse and Mozilla. We collect all the bug reports of Eclipse and Mozilla in

10 years, from Jan. 1, 2003 to Dec. 31, 2012. There are 368263 and 588694 bug reports in Eclipse and

Mozilla respectively.

3.1 Identifying authorship characteristics

We consider extending the seminal work by Frantzeskou et al. [13] to model the authorship characteristics.

In their work for software forensics, Frantzeskou et al. employ byte-level N -grams to define authorship

profiles and measure the similarity between two authorship profiles with Simplified Profile Intersection

(SPI). In a recent survey, Burrows et al. [17] compare existing techniques for authorship attribution of

source code and confirm that the approach of byte-level N -grams [13] is the best among existing methods.

In this study, we transfer the seminal work of Frantzeskou et al. [13] to model the authorship charac-

teristics, and extend SPI to NSPI for measuring the similarity between the authorship characteristics of

contributors.

Given a contributor in bug repositories, all his/her descriptions and comments are concatenated into

a single file. Then, a simplified profile can be defined as the set {X1, X2, . . . , XL} of the L most frequent

byte-level N -grams, to identify the authorship characteristics for the contributor, where a byte-level N -

gram is a consecutive sequence of N bytes. For example, given a string “debug tool”, there are totally 6

byte-level 5-grams, namely “debug”, “ebug ”, “bug t”, “ug to”, “g too”, and “ tool”.

Given two contributors with their profiles VA and VB, we use NSPI(VA, VB) to denote the similarity

between the authorship characteristics of these two contributors.

NSPI(VA, VB) = |VA ∩ VB |/L, (1)

where |θ| represents the size of θ.

In the following part of this section, we set L = 1000 and N = 5. The values of these parameters

are learned from the best results of ACS framework. We use the same values to build the model of the

authorship characteristic to analyze the results of each RQ.

3.2 Authorship characteristics over time

To investigate the evolvement of the authorship characteristics of contributors, we first calculate every

contributor’s authorship characteristics in every year within the interval from Jan. 1, 2003 to Dec. 31,

2012. Since the authorship characteristics (namely simplified profiles) cannot be directly visualized, we

use the similarity between the authorship characteristics in years instead to examine the behavior of each

contributor. Given a contributor A, his/her authorship characteristics in year 200X can be achieved by
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Figure 2 (Color online) Distributions of the authorship characteristics in Eclipse and Mozilla. (a) Distributions of the

authorship characteristics of contributors in Eclipse; (b) distributions of the authorship characteristics of contributors in

Mozilla.

calculating the simplified profile VA/200X over the concatenation of all the descriptions and comments by

A in this year. Then, we measure the similarity between A’s authorship characteristics in two consecutive

years with the approach of NSPI. For example, we can represent the similarity (denoted by NSPIA/2004)

between A’s authorship characteristics in 2003 and 2004 with the following formula.

NSPIA/2004 = NSPI(VA/2004, VA/2003). (2)

By this way, we can obtain a series of similarities over 10 years for contributor A, namely NSPIA/2004,

NSPIA/2005, . . . ,NSPIA/2012. For contributor A, we use NSPIA to represent the average value of his/her

similarities over 10 years.

NSPIA =
1

9

2012∑

X=2004

NSPIA/X . (3)

If a contributor does not have consecutive 10-year’s reported bug reports, we calculate the similarity

since the start year (the year he/she begins to submit bug reports). If there exists one year which the

contributor does not submit bug reports, we keep the similarity the same as before. In such a way, we can

calculate the average value of every contributor’s similarities. For both Eclipse and Mozilla, we sort all

the contributors in each project by their average value of similarities in descending order. We partition

all the contributors in each project into 100 equally sized portions. For the 100 equally sized portions

mentioned above, we compute the average rate of fixed bugs associated with the contributors in each

portion [18].

Figure 2 presents the average similarity and the average rate of fixed bugs against the portion of

contributors. The left vertical axis and the bars show the average similarity, while the right vertical axis

and the curves indicate the average rate of fixed bugs. As shown in Figure 2, both projects exhibit a long

tail phenomenon. For the average similarity of authorship characteristic, it suggests that only a fraction

of contributors show relatively stable authorship characteristics, while most contributors’ authorship

characteristics evolve significantly over time. For the average rate of fixed bugs, in either Eclipse or

Mozilla, it follows a similar tendency as the contributors’ similarities of authorship characteristics.

We perform correlation analysis between the average similarity and the average rate of fixed bugs. We

calculate the Pearson Correlation Coefficient between them. The result lies in −1 to 1. The bigger result

implies more likely correlated between the two variables. The Pearson Correlation Coefficient of Eclipse

is 0.95, while Mozilla is 0.88. Correlation is significant at the 0.01 level (2-tailed). We can find that the

average similarity shows a strong correlation with the average rate of fixed bugs.

This finding suggests that the stability of authorship characteristics could facilitate bug fixing. The

reasons for this finding can be two-fold. First, when a contributor’s authorship characteristics keep stable,

other contributors focusing on the same products can easily capture the ideas in his/her initialized bug

reports. Hence, they can update related bug reports to provide supplemental information. Second, when

developers in this project are familiar with the authorship characteristics of a contributor, they spend

less time on understanding his/her initialized bug reports.
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Figure 3 (Color online) Evolvements of authorship characteristics of 5 active contributors in Eclipse and Mozilla.

(a) Evolvement in Eclipse; (b) evolvement in Mozilla.

Furthermore, we examine the evolvement of the authorship characteristics of some active contributors.

We rank all the contributors in each project by the number of their contributed descriptions and comments

in descending order. Out of all the contributors, we select the top 5 contributors and examine their

evolvement from Jan. 1, 2003 to Dec. 31, 2012. In Figure 3, we plot each active contributor’s similarities

over years. In this figure, the similarity of an active contributor A on 2004 represents the similarity of

A’s authorship characteristics between 2003 and 2004, namely NSPIA/2004. As to Figure 3, most curves

of 5 active contributors in either Eclipse or Mozilla are relatively stable. For example, the similarities

of John Arthorne from 2004 to 2012 slightly vary in the interval of 0.7 and 0.8. In contrast, there also

exist some exceptions in both Eclipse and Mozilla. The similarities of Darin Wright are always close to

0.8 before 2010, however the curve sharply declines to 0.2 in 2011 and down to 0 in 2012. The reason

for the sharp decline of Darin Wright’s curve lies in that Darin Wright only contributes 2 bug reports in

2011 and no bug report in 2012. For Phil Ringnalda and timeless in Mozilla, the sharp declines of their

curves also suffer from similar reasons. To give more insights into the results, we continue to conduct

quantitative analysis. We calculate the average variance of the top 5 contributors. The average variance

of top 5 contributors is 0.019 for Eclipse and 0.013 for Mozilla. Considering that the average similarity of

all the contributors shows a long tail phenomenon, the average variance is relatively small. We can find

that top ranked contributors are more likely to keep stable than other contributors in terms of authorship

characteristics.

Answer to RQ1: The authorship characteristics of a fraction of contributors (e.g., active contributors)

in open source projects are relatively stable. Meanwhile, most contributors’ authorship characteristics

evolve greatly over time. Interestingly, the stability of the authorship characteristics facilitates bug fixing.

3.3 Authorship characteristics among products

A software project usually consists of many products. In this subsection, we examine the authorship

characteristics of active contributors in distinct products. In the experiments, we choose the same ac-

tive contributors in Subsection 3.2 and investigate their behaviors in 5 typical products to which they

contribute a great number of bug reports.

Tables 1 and 2 summarize the number of descriptions and comments submitted by these active con-

tributors for products. In these tables, we use terms “des.” and “com.” to represent descriptions and

comments. As to Tables 1 and 2, every active contributor provides far more comments than descriptions.

In addition, an active contributor does not devote efforts evenly to all the products. For example, Markus

Keller contributes 2123 descriptions and 4656 comments for the product of platform. However, only 77

descriptions and 191 comments are contributed by Markus Keller for the product of community.

Given an active contributor A, we first calculate his/her simplified profile VA over the concatenation of

all the descriptions and comments contributed by A within the whole project. To examine A’s behaviors

among products, we measure the similarity between A’s authorship characteristics in a product X and
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Table 1 The number of descriptions and comments by 5 active contributors in Eclipse

Contributor
platform jdt pde equinox community

des. com. des. com. des. com. des. com. des. com.

Markus Keller 2123 4656 2162 8293 325 460 78 160 77 191

Dani Megert 2231 19416 1578 19326 442 1489 96 433 78 446

John Arthorne 1211 12217 299 735 189 492 555 4745 110 750

Pascal Rapicault 571 2234 114 131 546 2425 1101 6381 101 157

Darin Wright 1016 12319 745 11942 498 3447 23 122 7 31

Table 2 The number of descriptions and comments by 5 active contributors in Mozilla

Contributor
core firefox seamonkey mozilla.org toolkit

des. com. des. com. des. com. des. com. des. com.

Jesse Ruderman 4586 12319 292 5276 13 215 79 192 185 1448

timeless 2088 9089 82 2191 159 916 107 337 97 631

Pascal Chevrel 51 181 49 167 30 82 369 573 7 24

Stephen Donner 142 1683 49 1359 50 1115 200 1419 51 1375

Phil Ringnalda 798 12025 265 7770 6 134 231 892 188 3764

Markus Keller                 Dani Megert
John Arthorne                 Pascal Rapicault
Darin Wright

Jesse Ruderman               Timeless
Pascal Chevrel                 Stephen Donner
Phil Ringnalda
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Figure 4 (Color online) Authorship characteristics of 5 active contributors in products of Eclipse and Mozilla. (a) Results

in products of Eclipse; (b) results in products of Mozilla.

that in the whole project with formula (4).

NSPIA/X = NSPI(VA/X , VA). (4)

In this formula, VA/X is A’s simplified profile over the concatenation of all the descriptions and com-

ments contributed by A within product X .

For both Eclipse and Mozilla, we present in Figure 4 the changes of 5 active contributors’ authorship

characteristics over 5 products. We can observe that all the active contributors show relatively high

similarities of authorship characteristics among distinct products, when compared with the distributions

of authorship characteristics shown in Figure 2. The average variance among distinct products of the

5 active contributors is 0.026 for Eclipse and 0.012 for Mozilla. The similarities of each contributor’s

authorship characteristics slightly change among distinct products. Ideally, we expect that a contribu-

tor’s authorship characteristics stemming from a large number of descriptions and comments should be

perfectly coincident with that from a segment of descriptions and comments. However, we can find that

the number of descriptions and comments may impact on the similarity of authorship characteristics. The

reason might lie in that we adopt byte-level N -grams approach, in which a larger number of descriptions

and comments may better capture one’s authorship characteristics, while a small amount of descriptions

and comments tend to introduce more bias in terms of NSPI.
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(1) Case 1: Annotated bug report by developer A unavailable. 

(2) Case 2: Annotated bug report by developer A available. 
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Figure 5 (Color online) Roadmap of Authorship Characteristics based Summarization (ACS).

Answer to RQ2: The authorship characteristics of contributors slightly change over distinct products.

The volume of a contributor’s descriptions and comments might impact his/her stability of authorship

characteristics.

4 ACS framework & experiments

In this section, we investigate how to employ the authorship characteristics to assist a typical software

task in bug repositories, namely BRS. First, we illustrate our new framework for BRS, namely Authorship

Characteristics based Summarization (ACS) in Subsection 4.1. Then, we present the experiments and

results of ACS over two corpora in Subsection 4.2 and 4.3, respectively.

The goal of BRS is to extract a short summary from the description and the comments of a given bug

report. As one typical software task in bug repositories, BRS can be resolved in either an unsupervised

way [8, 10] or a supervised way [9]. The key difference between a supervised way and an unsupervised

way lies in whether a training set of annotated bug reports is given or not. In addition to bug reports,

other documents can also be summarized [19]. In this study, we focus on the supervised BRS, in which

a training set of annotated bug reports is provided.

4.1 ACS framework

In this section, we incorporate the authorship characteristics into the task of BRS and present the

framework of ACS. The intuition of ACS is that, given a new bug report initialized by contributor A,

a classifier trained over annotated bug reports by A is highly likely to perform better than a classifier

trained over annotated bug reports by other contributors. Figure 5 illustrates the roadmap of ACS.

More detailed, ACS works as follows. Given a new bug initialized by contributor A and a training set

consisting of annotated bug reports, the process of ACS can be divided into two cases regarding whether

there exist annotated bug reports by the same contributor A. Noticed that in bug repositories, e.g.,

Bugzilla, the contributor initializing a bug report is a predefined item of this bug report, we can check

whether an annotated bug report is initialized by A in Θ(1) running time.

Case 1: Annotated bug reports by contributor A unavailable. In this case, no annotated bug reports
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by A can be directly used. For every contributor initializing an annotated bug report, ACS calculates

the similarity between his/her authorship characteristics and A’s authorship characteristics. Then, ACS

ranks all the annotated bug reports by their similarities in descending order. In this way, the writing

style of a top annotated bug report is more close to that of the new bug report by developer A, than that

of a bottom one. Finally, ACS chooses the top M annotated bug reports to train the classifier and feeds

the new bug report by developer A to achieve the resulting summary.

Case 2: Annotated bug reports by contributor A available. For this case, ACS simply chooses all the

annotated bug reports by contributor A as the new training set to train a classifier. Then, ACS feeds the

new bug report by A to the classifier to achieve the resulting summary.

In the remaining part of this subsection, we briefly discuss some features of ACS. First, any existing

supervised technique for BRS can be embedded to ACS after the training set is reduced. Second, in

contrast to existing supervised techniques (e.g., [9]), ACS performs a preprocessing step to reduce the

training set. One might argue that the preprocessing might consume some additional running time.

For a traditional supervised technique (e.g., [9]), multiple new bug reports could be predicted after a

classifier is trained over a large set of annotated bug reports. In contrast, ACS needs to achieve a specific

training set for every contributor who provides new bug reports. However, it is still rational to use ACS

though suffering from the overhead time. The key goal of BRS is to save a developer’s time for tracing

historical bug reports when he/she fixes a bug. A developer can save his/her time by manually checking

the summaries instead of the raw bug reports. Since ACS can be automatically run on computers, the

overhead time of the preprocessing step in ACS is acceptable.

4.2 Evaluation metrics

We evaluate our new framework ACS in terms of 4 metrics, namely Precision, Recall, F-score, and

Pyramid, where the first 3 metrics are widely used in information retrieval and the last one is developed

in text summarization [20, 21].

Precision measures the fraction of selected sentences that belong to the Gold Standard Summary (GSS)

which is annotated by people. The high value of Precision means more GSS sentences are selected in top

ranked sentences, and a perfect 1.0 value reflects that all the top ranked sentences are GSS sentences.

Precision can be considered as a measure of exactness. Precision can be computed as follows.

Precision (%) =
#sentences selected from GSS

#sentences in summary
× 100%. (5)

Recall measures the fraction of the sentences in GSS that are selected in the resulting summary. A

perfect 1.0 value reflects that all the GSS sentences are selected. Recall can be considered as a measure

of completeness which can be calculated as follows.

Recall (%) =
#sentences selected from GSS

#sentences in GSS
× 100%. (6)

In information retrieval, there usually exists a trade-off between Precision and Recall. It’s likely to

increase one at the expense of the other one. F-score is the harmonic mean of Precision and Recall as

follows.

F -score (%) = 2×
Precison×Recall

Precision+Recall
× 100%. (7)

To date, the corpora of BRS are annotated by people. For each sentence in a bug report, 3 annotators

vote whether it belongs to GSS or not. A bug report’s GSS consists of all the sentences gaining at least 2

votes. Pyramid is used to assess the quality of the resulting summary when there are multiple annotations

available [20, 21]. Given a summary, Pyramid can be calculated as follows.

Pyramid (%) =
#votes of sentences in summary

Max. num of votes for summary length
× 100%. (8)

The computing of Pyramid can be demonstrated with a simple example. Given a bug report and its

GSS which consists of 6 sentences with 2 votes and 8 sentences with 3 votes, the maximum number of
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votes for a summary with 10 sentences is (8×3)+(2×2) = 28. Then, given a summary with 10 sentences

gaining 21 votes, its Pyramid equals to 21/28× 100% = 75%.

4.3 Experiments on BRC corpus

In this section, we evaluate our new framework ACS over existing corpus which meets the scenario of

Case 1 and compare it against the state-of-the-art classifier.

4.3.1 BRC corpus

In this subsection, we briefly introduce some basic information of BRC corpus, a publicly available

corpus for BRS. BRC corpus is firstly provided in the seminal work of Rastkar et al. [9]. BRC corpus

consists of 36 annotated bug reports from 4 open source projects, namely Eclipse, Mozilla, KDE, and

Gnome. The 36 bug reports (9 bug reports from every project) are annotated by graduate students

from the Department of Computer Science at the University of British Columbia. Totally, there are 2361

sentences in these 36 bug reports. Each sentence is voted by 3 annotators to determine whether it belongs

to GSS. When a sentence gains at least 2 votes, it is included in GSS.

4.3.2 Experimental results

In this subsection, we run ACS over BRC data set and compare its performance against the state-of-the-

art supervised classifier BRC [9]. BRC is a conversation-based classifier trained over a series of annotated

bug reports. Similar as [9], we use a leave-one-out strategy, namely, each bug report is selected out as the

new bug report for summarization and the remaining 35 annotated bug reports are used as its training

set. We employ BRC as the underlying classifier in ACS. Given a new bug report R, ACS ranks all the

remaining 35 annotated bug reports and chooses some top ranked annotated bug reports as R’s reduced

training set. In this study, we choose the top 15 bug reports as the reduced training set. Then, these

15 annotated bug reports are fed into BRC as the training set to train a classifier for summarizing R.

Since ACS needs to rank all the annotated bug reports to reduce the training set, we first specify the

parameters used in ACS for calculating the similarities between authorship characteristics. There are

two parameters, namely the scale L of simplified profile and the value of N . In Figure 6, we evaluate the

performance of ACS with a series of combinations of two parameters, i.e., L = 600, 1000, 1400, N = 3,

4, 5, 6, 7, 8. In each subfigure of Figure 6, we set the horizontal axis as the value of N . The vertical axes

in Figure 6 are Precision, Recall, F-score, and Pyramid, respectively. For comparison, in each subfigure

of Figure 6, we also present the result of BRC as a baseline. In Figure 6, we use ACS(600), ACS(1000),

ACS(1400) to denote the curves of ACS with L = 600, 1000, 1400.

As shown in Figure 6(a), the value of Precision of ACS is impacted to a certain extent by the com-

binations of parameters. For three combinations (namely, L = 1000 and N = 5, L = 1400 and N = 5,

L = 600 and N = 8), ACS performs better than BRC in terms of Precision. For other combinations

of parameters, ACS is not so promising. When checking Figure 6 (b)–(d), we can find that ACS can

undoubtedly outperform BRC in terms of Recall, F-score, and Pyramid, for nearly all the combinations

of parameters. Based on the above observation, in this study, we set L = 1000 and N = 5 for ACS.

In Table 3, we present the numerical results of ACS (with L = 1000 and N = 5) and BRC. Since ACS

uses less annotated bug reports (namely 15 bug reports) than BRC as the training set for a new bug

report, one may argue that the success of ACS derives from the small training set size. Hence, we also

implement a random algorithm (denoted as Random) to check the effect of the training set size. Similar to

ACS and BRC, Random conducts a leave-one-out strategy. For every bug report R, Random arbitrarily

chooses 15 bug reports from the remaining 35 annotated bug reports as the training set. Then, Random

feeds these 15 chosen bug reports into BRC to train a classifier for producing the summary for R.

The best results among algorithms are presented in bold font. As shown in Table 3, the difference

of results achieved by BRC and Random is trivial. For Precision, Recall, and F-score, BRC slightly

outperforms Random. For Pyramid, Random is a bit better than BRC. Out of 3 algorithms, ACS always
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Figure 6 (Color online) Performance of algorithms with parameters. (a) Precision; (b) Recall ; (c) F-score; (d) Pyramid.

Table 3 Performance comparison of ACS, BRC, and Random on BRC corpus

Algorithm BRC Random ACS

Precision (%) 55.66 54.04 59.47

Recall (%) 30.00 29.66 33.70

F-score (%) 36.15 35.17 40.04

Pyramid (%) 54.61 55.75 60.36

performs best. ACS improves BRC in terms of 4 metrics by 3.7% to 5.75%. The comparison implies that

irrelevant annotated bug reports might hamper the task of BRS.

4.4 Experiments on new corpus

To further evaluate our new framework, namely Case 2 of ACS, we conduct experiments on a series of

new annotated bug reports.

4.4.1 New corpus preparation

In this subsection, we illustrate how to prepare a new corpus for further evaluation of ACS. It will be

ideal if we would have a corpus of annotated bug reports in which each contributor initializes multiple

bug reports. Unfortunately, such a corpus is not available to date. Following [9], we employ 7 graduate

students from School of Software, Dalian University of Technology to annotate 96 bug reports from 4 open

source projects, namely Eclipse, Mozilla, KDE, and Gnome. For each project, out of 24 bug reports,

every 6 bug reports are initialized by the same contributor. In such a way, there are 4 contributors

initializing bug reports in a project. In addition to these contributors initializing bug reports, some other

contributors who only comment on these bug reports are also involved in the corpus.

In Table 4, we list some statistical information of these bug reports. The second row of Table 4

presents the number of bug reports chosen in each project, namely 24 bug reports for each project. Since
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Table 4 Statistical information of new corpus

Project Eclipse Mozilla KDE Gnome

#bug reports 24 24 24 24

#comments per bug report 10.83 15.42 6.67 5.08

#sentences per bug report 43.67 61.71 30.58 16.88

#words per bug report 329.67 511 216.83 106.04

#contributor per bug report 3.75 5.21 3.71 2.92

#sentences per Manual Summary 5.29 4.92 2.63 3.36

#words per Manual Summary 106.07 75.50 39.61 41.01

#linked sentences per bug report 15.01 13.68 6.78 6.83

#sentences of GSS per bug report 12.88 11.08 6.21 6.63

a bug report is composed of one description and some comments. We also give the average number of

comments of each bug report in Table 4. For these chosen bug reports in Eclipse, a bug report contains

10.83 comments on average. The fourth row presents the average number of sentences in each bug report.

For example, in Mozilla, a bug report consists of 61.71 sentences. In addition, we also present the average

number of words in a bug report. In the sixth row of Table 4, the average number of contributors involved

in each bug is presented. For Eclipse and Mozilla, 3.75 and 5.21 contributors are involved in each bug

report on average, respectively.

Similar as [9], each bug report in this new corpus is annotated by 3 annotators. We employ a BC3 web-

based annotation software (http://www.cs.ubc.ca/nest/lci/bc3/framework.html) to assist the annotation

process. Given a bug report, an annotator is requested to manually summarize it in his/her own language

with up to 250 words and achieves his/her Manual Summary (MS). Then, the annotator links each

sentence in MS to one or more sentences from the original bug report. For each bug report, the set of

sentences gaining at least 2 votes forms its GSS. In Table 4, we present some statistical information of MS

and GSS. The seventh and eighth rows of Table 4 list the average number of sentences and the average

number of words in each MS. In the ninth row of Table 4, the average number of linked sentences from each

bug report is given. Finally, we present the average number of sentences in GSS for each bug report. Our

new corpus of annotated bug reports is publicly available on http://oscar-lab.org/paper/ac/corpus.htm.

4.4.2 Experimental results

In this subsection, we present the experimental results of ACS on the new corpus of annotated bug reports

and compare the performance of ACS with existing methods.

The new corpus of annotated bug reports can be divided into 4 data sets (each for one project). Each

data set consists of 24 annotated bug reports involving 4 contributors who initialize bug reports. As

stated in Subsection 4.4.1, there may exist some other contributors submitting only comments for the

bug reports. To evaluate the performance of ACS, we conduct a leave-one-out procedure over each data

set. More specifically, for each data set, one bug report is summarized with ACS which is trained on the

remainder of the annotated bug reports. In such a way, every bug report in a data set is summarized

and the results of all the bug reports are averaged and reported.

In this experiment, we use BRC as the embedded classifier in ACS. Given a bug report R initialized

by contributor A in the new corpus, contributor A also initializes 5 other bug reports in the remainder of

annotated bug reports. For clarity, we let T denote these 5 bug reports. Therefore, for the new corpus,

ACS follows its Case 2 to summarize bug reports. More specifically, ACS is trained on T, the 5 bug

reports initialized by A, to summarize bug report R.

To validate the effectiveness of ACS, we also run two comparative classifiers, namely BRC and Random.

(1) BRC for comparison. Given a data set, each bug report is summarized by BRC trained on the

remaining 23 annotated bug reports. We employ BRC to show the effectiveness of the authorship char-

acteristics in reducing training sets.
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Table 5 Performance comparison of ACS, BRC, and Random on new corpus

Project Eclipse Mozilla KDE Gnome

Algorithm BRC Random ACS BRC Random ACS BRC Random ACS BRC Random ACS

Precison (%) 63.08 61.28 67.03 40.95 37.81 42.52 55.50 50.65 59.30 67.50 64.18 73.06

Recall (%) 32.39 31.29 37.22 39.06 35.96 40.76 37.93 36.07 42.82 30.42 30.39 35.47

F-score (%) 41.42 41.14 46.34 38.78 35.56 39.93 43.55 40.75 47.77 41.13 40.75 46.89

Pyramid (%) 69.09 67.32 69.18 55.73 52.56 56.13 66.74 61.55 68.65 72.08 68.96 74.62

(2) Random for comparison. Since ACS uses 5 annotated bug reports as the training set to summarize

a bug report, rather than 23 bug reports in a project. When evaluating the performance of ACS, we

use Random to avoid the bias caused by the reduced training set size. Given a bug report, out of the

remaining 23 annotated bug reports, Random arbitrarily chooses 5 bug reports to train the BRC classifier

and produces the resulting summary.

Table 5 summarizes the experimental results of ACS, BRC, and Random over 4 data sets. For each

data set, the best results among three algorithms are given in bold font. As to Table 5, BRC always

outperforms Random in all the metrics, including Precision, Recall, F-score, and Pyramid. It implies

that an arbitrarily chosen subset of annotated reports is not a good choice for training set in BRS. When

comparing ACS with BRC, we can find that ACS achieves better performance than BRC. In terms of

Precision, ACS improves BRC by from 1.57% to 5.56%. For the other three metrics, we can also find

similar phenomena. We can observe that the performance difference between ACS and BRC varies from

data set to data set. For Eclipse, KDE, and Gnome, ACS improves BRC by over 4% in terms of F-score,

however for Mozilla, the improvement achieved by ACS is 1.15%. On the other hand, far remarkable

improvements can be observed when comparing ACS with Random. For example, the value of Precision

of ACS for Gnome is 73.06%, while that of Random is only 64.18%. It implies that the strength of ACS

derives from the chosen annotated bug reports based on the authorship characteristics, rather than the

reduced training set size.

Answer to RQ3: The authorship characteristics can be beneficial for typical software tasks (e.g., BRS)

in bug repositories. With the authorship characteristics, it is promising to find more accurate training

sets specific for contributors to facilitate software maintenance.

5 Discussion

In this section, we discuss a series of issues related to this study, including the modeling, the authorship

characteristics in other projects, and how to facilitate software tasks.

5.1 Modeling of authorship characteristics

It deserves further investigations on finding new effective approaches to model the authorship charac-

teristics. In this study, we employ byte-level N -grams to identify the authorship characteristics in bug

repositories. As shown in the literature, the approach of byte-level N -grams is an effective tool in au-

thor attribution [12] and software forensics [13]. With byte-level N -grams, we gain a series of findings.

Meanwhile, we also encounter some difficulties in this study. First, the simplified profile calculated by

the approach of byte-level N -grams cannot be easily visualized. Hence, we have to employ NSPI to

measure the similarity between authorship characteristics instead. A better modeling approach may help

us to investigate RQ1 and RQ2 more directly. Second, we expect that an ideal modeling approach is

insensitive to the length of bug reports submitted by contributors. However, we find that the number of

bug reports may impact on the similarity between authorship characteristics, when examining the answer

to RQ2 with byte-level N -grams. Although the approach of byte-level N -grams shows its effectiveness

in authorship attribution and software forensics, this approach may not be perfect for bug repositories.
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Bug reports are usually far shorter than texts in authorship attribution meanwhile they deal with more

domain specific topics (e.g., products, components) than source code in software forensics.

5.2 Authorship characteristics in other projects

We examine the authorship characteristics of open source projects, including Eclipse, Mozilla, KDE,

and Gnome. All the above projects employ Bugzilla, a popular bug repository, to store and manage

bugs. In Bugzilla, bug reports are submitted by people (contributors). For commercial projects, software

companies may use their own bug tracking systems to manipulate bugs. In the commercial bug tracking

systems, bug reports may be generated and submitted automatically. Hence, the conclusions achieved in

this study may not directly apply to commercial projects.

However, we hope that commercial bug tracking systems may also benefit from this study. For example,

by investigating the impact of the authorship characteristics on bug fixing in Bugzilla, developers of

commercial bug tracking systems can improve the layouts of those automatically generated bug reports,

to help with bug fixing. To validate the above idea, more case studies are needed in commercial bug

tracking systems.

5.3 Enhancing software tasks

The behaviors of contributors submitting comments in bug repositories should be further examined in

ACS. Given a new bug report initialized by contributor A, in Case 2 of ACS, we reduce the training set by

choosing the annotated bug reports which are initialized by A. In Case 2 of ACS, we have risked ignoring

the authorship characteristics of contributors submitting comments. For future work, more sophisticated

strategies should be taken to consider the contributors submitting comments.

In this study, we have found the effectiveness of the authorship characteristics in improving the task

of BRS. To facilitate other bug report oriented software tasks, e.g., bug triage, severity identification, it

needs more efforts to seek for strategies to fully leverage the authorship characteristics.

6 Related work

In this section, we briefly review the relate work of this study. In Subsection 6.1, we present the research

of MBR. In Subsection 6.2, we present two closely related areas of the authorship characteristics, namely

authorship attribution and software forensics.

6.1 MBR

Since many projects employ bug repositories to store and manage bug reports, MBR has been a hot

topic in software maintenance. Following the methods of mining software repositories [22], researchers

in MBR usually leverage the contents of bug reports to build either a machine learning model or an

information retrieval model for resolving software tasks. Some traditional tasks include bug triage [2, 3],

fault prediction [4,5], bug location [6,7], and BRS [8–10]. Our research in this study differs from traditional

tasks in that we focus on the authorship characteristics of contributors, rather than the contents of bug

reports.

In recent years, a lot of efforts have been spent on “people” factors in bug repositories [23]. Jeong et

al. [24] leverage the tossing relationship between developers to assist bug triage. Xuan et al. [25] model

the developer prioritization and assist three predictive tasks in bug repositories, including bug triage,

severity identification, and reopened bug prediction. Our work can also be viewed as an investigation

into “people” factors in bug repositories. However, the existing researches (e.g., [24, 25]) consider the

collaborations among people, we focus on a contributor’s personality, namely authorship characteristics.

Some researchers spend a lot of efforts on investigating the bug report quality. Zimmermann et al. [11]

conduct a survey on what makes a good bug report and propose a prototype to rate a bug report mainly

based on its content. Lotufo and Czarnecki [26] develop a new bug tracking system named BugBot to
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facilitate reasoning about bug reports. No in-depth investigation has been conducted on the authorship

characteristics of contributors.

6.2 Authorship attribution & software forensics

Given a text of unknown authorship, the goal of authorship attribution [27] is to assign this text to one

candidate author. In this task, the text samples for a set of candidate authors are available in advance.

Authorship attribution can be viewed as a multiclass, single-label text categorization problem. In [12],

Keselj et al. propose a method based on byte-levelN -grams to address authorship attribution. In contrast

to existing literatures [28, 29], this method is simple and language-independent.

Software forensics [17] can be viewed as the task of authorship attribution on source code. Frantzeskou

et al. [13] extend the work of Keselj et al. [12] to characterize the software authors. As to the comparison

by Burrows et al. [17], the approach of byte-level N -grams [13] is best among existing methods (e.g.,

[30–32]). In this study, we employ a similar method as Frantzeskou et al. [13] to measure the authorship

characteristics of contributors.

7 Conclusion

In this study, we investigate the authorship characteristics of contributors in bug repositories and leverage

the authorship characteristics to resolve software tasks. By modeling the authorship characteristics with

byte-level N -grams, we achieve a series of interesting findings. First, active contributors tend to show

stable authorship characteristics. Meanwhile, the stability of the authorship characteristics could facilitate

bug fixing. Second, the authorship characteristics of contributors slightly vary over products in a project.

Finally, with the help of the authorship characteristics, the training sets of predictive tasks in software

maintenance can be effectively reduced while achieving satisfactory performance.

For future work, we plan to investigate the following directions. First, we aim to find better modeling

approaches for the authorship characteristics. In this study, we employ byte-level N -grams as the mod-

eling approach, which is effective in authorship attribution and software forensics. However, bug reports

are usually short and domain specific, it would be ideal if a specific modeling approach can be proposed.

Second, we hope to further improve ACS. In the framework ACS, we use only the description contributor

to determine the training set. Since a bug report usually involves multiple contributors, we will seek

to leverage the authorship characteristics of all the contributors in a bug report. Third, motivated by

the success of ACS, we consider to incorporate the authorship characteristics to facilitate software tasks

other than BRS.
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