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Abstract Local search algorithms play an essential role in solving large-scale com-
binatorial optimization problems. Traditionally, the local search procedure is guided
mainly by the objective function of the problem. Hence, the greedy improvement para-
digm poses the potential threat of prematurely getting trapped in low quality attraction
basins. In this study, we intend to utilize the information extracted from the relaxed
problem, to enhance the performance of the local search process. Considering the
Lin-Kernighan-based local search (LK-search) for the p-median problem as a case
study, we propose the Lagrangian relaxation Assisted Neighborhood Search (LANS).
In the proposed algorithm, two new mechanisms, namely the neighborhood reduc-
tion and the redundancy detection, are developed. The two mechanisms exploit the
information gathered from the relaxed problem, to avoid the search from prematurely
targeting low quality directions, and to cut off the non-promising searching procedure,
respectively. Extensive numerical results over the benchmark instances demonstrate
that LANS performs favorably to LK-search, which is among the state-of-the-art local
search algorithms for the p-median problem. Furthermore, by embedding LANS into
other heuristics, the best known upper bounds over several benchmark instances could
be updated. Besides, run-time distribution analysis is also employed to investigate the
reason why LANS works. The findings of this study confirm that the idea of improving
local search by leveraging the information induced from relaxed problem is feasible
and practical, and might be generalized to a broad class of combinatorial optimization
problems.
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1 Introduction

Local search is among the most prominent and widely applied techniques for solving
large-scale combinatorial optimization problems, as either a stand-alone algorithm,
or an embedded subroutine within metaheuristics (Resende and Werneck 2004; Vela
et al. 2010; Brimberg et al. 2008; Ceschia and Schaerf 2013; Riise and Burke 2011;
Gutin and Karapetyan 2009; Brueggemann and Hurink 2011). For example, the LKH
heuristic (Helsgaun 2009) represents the state-of-the-art local search algorithm to solve
the Traveling Salesman Problem (TSP), which is able to achieve optimal solutions
over large-scale instances with up to 85,900 variables. In the domain of Satisfiability
(SAT) problem, heuristics such as CRSat (Belov et al. 2011) and its variants are
able to achieve highly effective performances over very large-scale instances. These
algorithms are usually classified as stochastic local search (Hoos 2005), in which local
search constitutes the core component.

Starting from an initial solution, local search iteratively traverses the neighborhood
of the incumbent solution, in search of solutions with better quality.1 Traditionally,
local search is mainly guided by the objective evaluation. Hence, there is usually
no sufficient information to measure how much a local optimum deviates from the
global optimum during the search. Thus, it would be ideal if information indicating
the relative quality of the current position could be incorporated in local search. With
the guidance of the introduced information, we may be able to avoid the situation in
which local search gets stuck in poor local optimum trap, and might be able to detect
the non-promising search regions of the solution space, and terminate the redundant
search operations.

Meanwhile, recent years have witnessed the success of emerging trends and new
approaches that leverage the information induced from relaxed problem to guide the
heuristic search procedure. These approaches have been demonstrated to be very effec-
tive. However, the information exploitation is mostly realized at the global level, such
as sorting the neighborhood order (Puchinger and Raidl 2008) and search space reduc-
tion (Ren et al. 2012a). To the best of our knowledge, the issue of guiding the search at
the local level with the relaxation information has not yet been systematically inves-
tigated.

Considering the Lin-Kernighan-based local search (LK-search) for the p-median
problem as a case study, we intend to employ the Lagrangian relaxation to guide the
local search algorithm. To achieve this, we propose the Lagrangian relaxation Assisted
Neighborhood Search (LANS). LANS enhances the performance of LK-search from
two aspects. On the one hand, to avoid the search from prematurely targeting low
quality directions, we develop a neighborhood reduction mechanism, which works by

1 Sometimes the algorithms that combine local search with stochastic perturbations are also loosely denoted
as local search. However, in this study, we only refer to local search as those algorithms that traverse
neighborhoods deterministically.
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eliminating those variables that may lead to increased lower bounds, from the candidate
sets. This mechanism is inspired by the branching rules that are widely adopted in tree
search such as beam search (Croce et al. 2004; Bennell and Song 2010) and local
branching (Fischetti and Lodi 2003). On the other hand, we propose a redundancy
detection mechanism, to detect and cut off the non-promising searching procedure,
which is motivated by the bounding operation of branch-and-bound (Järvinen et al.
1972; Christofides and Beasley 1982; Li and Quan 2010).

In order to evaluate the performance of LANS, extensive experimental study is
conducted. Numerical results over a series of benchmark instances demonstrate that
LANS performs favorably to LK-search, which is among the state-of-the-art local
search algorithms for the p-median problem. Then, by embedding LANS as a subrou-
tine, we examine the behavior of LANS in the context of metaheuristics. Finally, the
run-time distribution analysis is carried out, over LANS, LK-search, and two other
variant versions of LK-search, to investigate why LANS works. Using the run-time
distribution analysis, we observe that both the neighborhood reduction and the redun-
dancy detection mechanisms achieve the expected objectives, i.e., the neighborhood
reduction mechanism is able to prevent the search from prematurely getting trapped
in low quality attraction basin, and the redundancy detection mechanism monitors
the estimated quality of the search, and could terminate the non-promising search
process. Furthermore, by integrating the two mechanisms with LK-search, the pro-
posed LANS shows the dominance in the analysis, in terms of both the effectiveness
and the efficiency.

The contributions of this paper could be summarized as follows. (1) We propose
a neighborhood reduction mechanism, to avoid the local search from being prema-
turely trapped in low quality attraction basins. (2) We develop a redundancy detection
method, to detect and terminate the neighborhood traversal that could not find promis-
ing solutions. (3) Extensive experiments demonstrate both the effectiveness and the
efficiency of the proposed local search. In particular, by embedding LANS into other
heuristic frameworks, several best known results over large-scale Euclidean bench-
mark instances could be updated.

The rest of the paper is organized as follows. In Sect. 2, we briefly review the
related work in the literature. In Sect. 3, we present the Lagrangian relaxation Assisted
Neighborhood Search. Then, extensive experimental results are reported and discussed
in Sect. 4. Finally, in Sect. 5, we conclude the paper, and point out several potential
directions for the future work.

2 Background

2.1 Local search algorithms for the p-median problem

In this subsection, we introduce the basic information of the p-median problem, as well
as the local search algorithms for solving the problem. Given a set F of m facilities,
a set U of n users, a distance matrix D (di j indicates the distance between user i
and facility j), and a constant p ≤ m, the p-median problem is to select a median
set J ⊆ F , |J | = p, to minimize the sum of the distances from each user to his/her
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nearest median. It is straightforward that, solutions could be encoded as fixed length
subsets of the facility set.

As one of the basic problems in the field of location science, the p-median problem
has attracted great research attention since it was first issued in the 1960s (Hakimi
1964), due to its wide applications to various domains (Reese 2006; Mladenovic et
al. 2007). Various algorithms have been adopted to solve the problem (Hansen and
Mladenovic 1997; Resende and Werneck 2004; Avella et al. 2007; García et al. 2011;
Ren et al. 2012a). However, because of the intrinsic difficulty of the p-median problem,
exact algorithms are usually not capable of solving large-scale instances to optimality.
Consequently, researchers have to resort to heuristics to search for near optimal solu-
tions. Among these algorithms, local search and local search-based (meta)heuristics
comprise the majority of these promising categories of algorithms (Rosing et al. 1999;
Resende and Werneck 2004; Ren et al. 2012a). In these algorithms, various local
search algorithms play a crucial role to improve the solution quality. Typical exam-
ples of local search algorithms for the p-median problem include interchange, 2-opt,
and LK-search. These three local search algorithms share the commonality that, they
all consider swap-based neighborhood structures, i.e., the neighborhood move opera-
tions are conducted by swapping the median variables and the non-median variables
of the incumbent solution. Besides, each local search has its unique features, which
are described as follows.

Interchange is proposed in the context of the p-median problem in (Teitz and Bart
1968), which is based on iteratively swapping one pair of variables, in the hope of
improving the solution quality. Once such swap is not possible, interchange would
terminate, and return the corresponding local optimum. Since the proposal, interchange
has become the most widely used local search algorithm in the p-median literature.
We shall also note that, there exist several popular implementations of interchange
(Teitz and Bart 1968; Whitaker 1983; Resende and Werneck 2003), among which the
version proposed by Resende and Werneck (2003) is the most efficient one, which
benefits from a well designed time-space trade-off.

2-opt for the p-median problem is a local search algorithm with a larger neigh-
borhood than interchange (Rosing et al. 1999). Each 2-opt neighborhood consists of
the solutions that are reachable from the incumbent solution by swapping at most two
pairs of variables. Larger neighborhood structure usually yields better solution quality.
However, due to the neighborhood traversing overhead, 2-opt is usually not applicable
to large-scale instances.

LK-search is a relatively new local search to solve the p-median problem, compared
to other local search algorithms. Proposed by Kochetov et al. (2005), LK-search is
among the best local search algorithms for the p-median problem. LK-search is based
on the ideas of (Kernighan and Lin 1970) for the Graph Partition Problem (GPP).
Unlike other swap-based local search (such as interchange and 2-opt) in which only
swaps with improvement could be conducted, LK-search intends to overcome the
local optimum traps by allowing the swaps that lead to worse solutions. Besides,
LK-search also benefits from a tabu-like (Glover 1989, 1990) mechanism. Each time
a swap operation is performed, the variables involved in the swap are put into tabu
lists, to help the search explore new regions of the solution space. Besides, we should
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note that, in the worst case, LK-search requires exponential number of swaps before
convergence (Alekseeva et al. 2008).

Algorithm 1: LK-search
Input: Initial solution s
Output: Improved solution s∗

1 begin
2 f lag← true
3 s∗ ← s
4 while f lag do
5 f lag← f alse
6 incumbent ← s∗
7 candidatein ←{facility i : i is not a median in incumbent}
8 candidateout ←{facility j : j is a median in incumbent}
9 while candidatein �= ∅ and candidateout �= ∅ do

10 (in, out)← findBestNeighbor(incumbent, candidatein , candidateout )

11 swap(incumbent, in, out)
12 candidatein ← candidatein \ {in}
13 candidateout ← candidateout \ {out}
14 if incumbent is better than s∗ then
15 s∗ ← incumbent
16 f lag← true
17 end
18 end
19 end
20 return s∗
21 end

The pseudo code of LK-search is presented in Algorithm 1. The algorithm works as
follows. Similar with most existing local search algorithms for solving the p-median
problem, LK-search follows the iterative paradigm to improve the input solution s
(Lines 4–19).2 In the algorithm, Lines 9–18 represent the process of traversing each
LK neighborhood. To be more specific, the incumbent solution is assigned with the
currently best solution achieved up the previous iteration s∗ (Line 6), and the candidate
sets (candidateout and candidatein) are firstly constructed, with the medians and the
non-median facilities, respectively (Lines 7–8). Then, a series of swaps are performed,
between the variables from the two candidate sets to improve the solution quality. Each
swap involves the pair of variables that yields the best profit. 3 Each time a pair of
variables is selected, the swap is conducted (Line 11). As mentioned, the main feature
of LK-search, which differs from other swap-based local search, is that LK-search
introduces a tabu-list like mechanism. As shown in Lines 12–13, each time a pair of

2 In this study, we are mostly interested in the local search procedure, hence, for the constructive heuristic,
we simply employ the random initialization (i.e., p out of m facilities are selected as medians uniformly at
random).
3 The functionality of the subroutine findBestNeighbor in Line 10 is to find the best pair of variables
that leads to the best profit from the candidate sets. In this study, this subroutine is partially based on the
implementation of Resende and Werneck (2003).
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(a) LK-search

(b) LK-search, partial enlarged view (c) LK-search, partial enlarged view

Fig. 1 A typical run of LK-search, over PCB3038 (p = 300)

variables are swapped, these variables are excluded from the candidate sets.4 With
this mechanism, LK-search can to some extent overcome the traps of plateaus and
ridges. After the current neighborhood has been traversed, and the best solution is
updated, the search will continue, from the best solution just reached. Otherwise, the
local search would terminate, and the best solution s∗ is returned.

Figure 1a illustrates a typical execution of LK-search, over a random initial solution,
to the benchmark instance PCB3038 with p = 300. The axes indicate the number of
swaps conducted, and the objective value of the incumbent solution. In order to better
interpret the LK-search’s behavior, we also present two partial enlarged views of
Fig. 1a, in Fig. 1b, c. From the figures, we could observe the following phenomena.

First, over the instance, the typical LK-search run in Fig. 1 requires 1,800 number
of swaps to terminate, which consists of 6 Lin-Kernighan neighborhood traversals.
Meanwhile, if we execute LK-search from 100 random initial solutions, we observe
that the number of swaps ranges within [1200, 2400], with an average of 1,646 number
of swaps. Second, the major improvement happens during the beginning of the search,
especially the first LK neighborhood traversal. After that, the improvement tends to
be smaller. Third, as mentioned, with the tabu-like mechanism, LK-search is able to

4 Note that the variant presented in this paper is slightly different from the original version by Kochetov et
al. (2005), in that during the preliminary experiments, we observe that the version presented in Algorithm 1
is generally more effective.
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overcome certain traps of local optima. For example, within swaps number 250–260
(see Fig. 1b), the objective value of the incumbent solution undergoes an increase
first, and a decrease subsequently. Fourth, despite the promising tabu-like mechanism,
there might be redundant swap operations, which do not lead to better solutions.
For example, within swap number 500–599 (see Fig. 1c), the objective value of the
incumbent solution keeps increasing, except for several minor decreases, and the
objective value is always above 190,000.

In summary, with the tabu-like mechanism, LK-search is able to achieve high quality
solutions. However, there is still room for improvement. For instance, in LK-search,
the first neighborhood traversal is critical to the search performance. Thus, if we could
improve the traversal procedure for this neighborhood, the overall performance might
be significantly enhanced. Second, as we have discussed, there might be computation
waste in the search procedure. If we could detect the non-promising search directions,
and prevent the search from exploring these directions, the LK-search procedure may
be accelerated.

2.2 Mathematical programming assisted heuristics

In this subsection, we introduce the related work in which relaxation-based tech-
niques and heuristics approaches are combined for problem solving. For example,
Puchinger and Raidl (2008) propose a Relaxation Guided Variable Neighborhood
Search (RGVNS) for the Multidimensional Knapsack Problem (MKP), in which the
exploration order of the neighborhoods is sorted with the estimated quality corre-
sponding to each neighborhood, based on the lower bound calculation achieved by
Lagrangian relaxation. Ren et al. (2012a) issue the search space reduction in the context
of the p-median problem. The reduction is carried out by calculating the lower bound
of a series of partial solutions, using Lagrangian relaxation. Each time the lower bound
exceeds the upper bound of the instance, the value assignment of the corresponding
variable could be determined. With the search space reduction mechanism, the pro-
posed algorithm Accelerated Limit Crossing based Multilevel Algorithm (ALCMA)
updates several best known upper bound in the literature. From these examples, we
can see that the performances of heuristics could be significantly improved, under the
guidance of the information that is extracted from the relaxed problems. However, the
information exploitation in the existing work is mostly realized at the global level,
such as sorting the neighborhood order (Puchinger and Raidl 2008) and search space
reduction (Ren et al. 2012a). To the best of our knowledge, the issue of guiding the
search at the local level with the relaxation information has not yet been systematically
investigated. Hence, in this study, we intend to explore the possibility of utilizing the
information obtained from the relaxed problem, to achieve the two objectives raised
in Sect. 2.1. The main difference between this study and the existing work is that,
we intend to exploit the information at a finer granularity, which might enable more
flexible designs. For instance, we could embed such algorithms into other frameworks.

After briefly introducing the mathematical programming assisted heuristics, we
shall briefly revisit the Lagrangian relaxation procedure of the p-median problem
(Senne and Lorena 2000). More specifically, the p-median problem can be modeled
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as the following formulations:

min
n∑

i=1

m∑

j=1

di j xi j (1)

s.t.

m∑

j=1

xi j = 1, i ∈ {1, 2, . . . , n} (2)

m∑

j=1

y j = p (3)

xi j ≤ y j , i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , m} (4)

xi j , y j ∈ {0, 1}, i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , m} (5)

In the formulations, a solution consists of a matrix Xn×m , as well as a vector Ym

specifying the subset of facilities are chosen. For the solution, xi j = 1 means that user
i is assigned to facility j , and xi j = 0 otherwise; y j = 1 represents that facility j is
chosen as a median, and y j = 0 otherwise.

Lagrangian relaxation involves solving the relaxed version of the problem, to obtain
the lower bound. Senne and Lorena (2000) propose an efficient way to calculate the
lower bound. In this paper, the lower bound is calculated based on this method. Hence,
we shall provide some detailed information about the method in Senne and Lorena
(2000).

In Senne and Lorena (2000), the relaxed version of the p-median problem is for-
mulated by removing Constraint (2), meanwhile introducing a penalty term (parame-
terized by t and λ) for violating those removed constraint. Consequently, the problem
can be transfered into the relaxed version:

min
n∑

i=1

m∑

j=1

di j xi j + t
n∑

i=1

λi (1−
m∑

j=1

xi j )

= min
n∑

i=1

m∑

j=1

(di j − tλi )xi j + t
n∑

i=1

λi (6)

s.t. Constraints (3), (4), and (5).
Given t and λ, it is straightforward that the X variables only appear in the first term,

which could be decomposed into n sub-problems:

min
m∑

j=1

(di j − tλi )xi j (7)

s.t. Constraints (3), (4), and (5).
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Each sub-problem could be solved as follows: for each facility j , let an auxiliary
cost be defined as β j =∑n

i=1 min(0, di j − tλi ). Sort β in ascending order, such that
βk1 ≤ βk2 ≤ · · · ≤ βkm , and let K = {k1, k2, . . . , kp} be the index set associated with
the p smallest β elements. Variables of Y corresponding with K are determined to be
1, and the rest variables of Y are assigned to 0. With the values of vector Y decided,
the variables of X are then calculated:

xi j =
{

1 di j < tλi , y j = 1

0 otherwise.
(8)

For any configurations of t and λ, Senne and Lorena (2000) show that the lower
bound of the problem (denoted as L B), could be calculated by:

L B =
m∑

j=1

β j y j + t
n∑

i=1

λi =
p∑

j=1

βk j + t
n∑

i=1

λi (9)

Algorithm 2: LagrangianRelaxation
Input: p-median problem instance π

Output: Lower bound L B, β, K , t , λ

1 begin
2 Initialize t and λ

3 while Criteria not met do
4 for j = 1 to m do
5 β j =

∑n
i=1 min(0, di j − tλi )

6 Sort the β vector so that βk1 ≤ βk2 ≤ ... ≤ βkm
7 Calculate the lower bound with Equation (9)
8 if The lower bound is improved then
9 Update L B

10 Update t and λ with respect to Senne and Lorena (2000)

11 return L B, β, K , t , λ

3 Lagrangian relaxation assisted neighborhood search

In this section, we present how to exploit the structure obtained from the relaxed prob-
lem to guide the LK-search procedure. The proposed algorithm LANS: Lagrangian
relaxation Assisted Neighborhood Search improves LK-search from two aspects: (1)
how to avoid the potentially low quality attraction basins, and (2) how to detect the
redundant swap operations, and cut off the non-promising search procedure.

The main idea of this study is to exploit the information gathered from the relaxed
version of the p-median problem, to guide the local search process. We intend to
conduct a reduction over the candidate sets during the first neighborhood traversal of
LK-search, in the hope of avoiding the low quality attraction basins. The motivation
behind this reduction mechanism is that, fixing a variable as a median (non-median)
in essence introduces an extra constraint to the problem. This operation may lead to
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Algorithm 3: strengthenedLowerBound
Input: p-median problem instance π , fixed median set M , fixed non-median set T
Output: Lower bound L B(M, T )

1 begin
2 Obtain L B, β, K , t , λ from Algorithm 2
3 for each facility i ∈ M do
4 Add yi = 1 as an extra constraint

5 for each facility j ∈ T do
6 Add yi = 0 as an extra constraint

7 Solve the relaxed problem of Equation (6), with the extra constraints
8 L B(M, N )← optimal objective value to the relaxed problem
9 return L B(M, T )

the increase of the lower bound. Inspired by the popular branching rules in the tree
search-based algorithms, such as beam search (Croce et al. 2004; Bennell and Song
2010) and local branching (Fischetti and Lodi 2003), during the first neighborhood
traversal, we eliminate those variables that may cause the increase of the lower bound,
from the candidate sets. We define the candidate sets as

candidatein = {facility i : i is not a median, βi − βkp < ε} (10)

candidateout = {facility j : j is a median, βkp+1 − β j < ε} (11)

The structures β and K are extracted from the Lagrangian relaxation algorithm,
which is mentioned in Sect. 2.2. It is straightforward to verify the reduction criteria.
For example, for any facility i for which βi > βkp holds, forcing i to be a median
will increase the lower bound of the corresponding solutions. The reason is that, by
introducing the constraint yi = 0 in the Lagrangian relaxation algorithm, the relaxed
problem transfer to a p− 1 dimensional problem. Hence, the p− 1 smallest β values
are to be selected. With the penalty parameters t and λ unchanged, L B − βi + βkp is
a lower bound of the solution space with the constraint yi = 0, which implies that the
lower bound would increase at least ε, which is a sufficiently small positive floating
point number (1×10−4 in this study). Hence, by replacing the equations of Lines 7–8
of LK-search to Eqs. 10 and 11, we realize the neighborhood reduction mechanism.

Then, we shall proceed to address the redundancy detection. The idea is similar with
the neighborhood reduction. Note that in LK-search, the tabu-like mechanism guar-
antees that the swapped variables are held unchanged for the rest of the neighborhood
traversal, which is similar as the bounding operation of the classical branch-and-bound
algorithms (Järvinen et al. 1972; Christofides and Beasley 1982). More specifically,
each time a swap operation is carried out, the lower bound is to be strengthened. If the
updated lower bound exceeds the upper bound, the following neighborhood traversal
can not reach any optimal solutions. Hence, the neighborhood traversal can be safely
terminated. More detailed, each time a pair of facilities (in, out) is swapped, the lower
bound is updated with Algorithm 3. The motivation of strengthenedLowerBound is
similar with Eqs. 10 and 11, which tries to strength the lower bound by introducing
extra constraints, which has also been used in several backbone guided approaches
(Climer and Zhang 2002; Ren et al. 2012a). By comparing the strengthened lower
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bound with the current best solution quality each time a swap is carried out, the redun-
dancy detection mechanism could be incorporated in LK-search.

Algorithm 4: LANS
Input: Initial solution s, Lower bound L B, Auxiliary structures β and K from Algorithm 2
Output: Improved solution s∗

1 begin
2 f lag← true
3 s∗ ← s
4 threshold ← ε

5 while f lag do
6 f lag← f alse
7 incumbent ← s∗

// Neighborhood reduction mechanism
8 candidatein ← {i : i is not a median in incumbent , βi − βk p < threshold}

9 candidateout ←{ j : j is a median in incumbent , βk p+1 − β j < threshold}

10 M ← ∅
11 T ← ∅
12 while candidatein �= ∅ and candidateout �= ∅ do
13 (in, out)← findBestNeighbor(incumbent, candidatein , candidateout )

14 swap(incumbent, in, out)
15 candidatein ← candidatein \ {in}
16 candidateout ← candidateout \ {out}

// Redundancy detection mechanism
17 M ← M ∪ {in}
18 T ← T ∪ {out}
19 if strengthenedLowerBound(M, T ) > objective value of s then
20 break
21 end
22 if incumbent is better than s∗ then
23 s∗ ← incumbent
24 f lag← true
25 end
26 end
27 threshold ←+∞
28 end
29 return s∗
30 end

Finally, after introducing the two mechanisms, we present the pseudo code of LANS
in Algorithm 4. The flow of LANS is similar as LK-search. The main differences lie in
the following three aspects. (1) In Lines 8–9, during the first neighborhood traversal,
we restrict the candidates to be those variables that do not lead to increased lower
bounds when involved in swap operations. (2) During the subsequent neighborhood
traversals, we switch back to the regular Lin-Kernighan neighborhood, by setting the
threshold to a sufficiently large value (Line 27). By this strategy, we intend to make the
search procedure more exploratory. (3) In Lines 17–21, after each swap operation, we
update the lower bound, and conduct the redundancy detection to avoid the potential
computational waste.

In summary, in this section, we propose the Lagrangian relaxation Assisted Neigh-
borhood Search. In the following section, we intend to conduct various experiments,
to evaluate the proposed algorithm.
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4 Empirical study

In this section, we shall present a series of experiments, to examine the performance
of the proposed local search algorithm, from both the effectiveness and the efficiency
perspectives. We first demonstrate the effectiveness of the proposed algorithm using
the numerical results over a series of benchmark instances. Then, we examine the
behavior of LANS, when embedded in other frameworks. Finally, we employ the run-
time distribution to evaluate the dynamic characteristics of LANS. All the algorithms
are implemented in C++, compiled with g++ 4.7 with flag –O3. The experiments are
conducted on a Pentium IV 3.2 GHz PC with 4GB memory, running GNU/Linux with
kernel 3.10.

4.1 Numerical results

In this section, the numerical results of LANS are presented. To evaluate the perfor-
mance of LANS, we consider four classes of benchmark instances, which are widely
adopted in the p-median related literatures (Hansen and Mladenovic 1997; Resende
and Werneck 2003, 2004; Kochetov et al. 2005).

The first class consists of 40 graph-based instances, which are from ORLIB (Beasley
1993). Each ORLIB instance is represented by a connected graph and a corresponding
p value. Each node in the graph indicates both a facility and a user, and the distances
between the users and the facilities are determined by the length of the shortest path
between the corresponding nodes in the graph.

The second class consists of the Euclidean instances, which are constructed using
TSPLIB (Reinelt 1991). In each Euclidean instance, the points on the plane rep-
resent both the user set and the facility set. The distances are Euclidean distances
between these points. More specifically, we consider FL1400, PCB3038, RL5934,
and RL11849, with various values of p. Following the experimental designs of the
existing work (Hansen and Mladenovic 1997; Resende and Werneck 2004), the dis-
tances within each instance are kept with double precision.

The third class is RW, which consists of the random instances, which are introduced
in Resende and Werneck (2003). In each RW instance, the number of the users and
the number of the facilities are the same, and the distances between the users and the
facilities are randomly generated.

The fourth class comprises of the instances with large duality gaps (denoted as
GAP). These instances are introduced by Kochetov et al. (2005), and are generated to
examine the performance of LK-search. Unlike the other three classes of instances,
the density of the GAP instances are relatively low, i.e., not all facilities and the users
are connected. Consequently, given a GAP instance, a median set of size p may not
always be feasible (Kochetov et al. 2005).

To objectively measure the solution quality achieved by LANS, two baseline results
are employed in this study. First, we use the best known results extracted in the literature
(Resende and Werneck 2004; Pullan 2008; Ren et al. 2012a, b, 2013). The reason we
use these results is that, among the instances, only the ORLIB instances have been
exactly solved (Beasley 1993). However, the scales of these instances are relatively
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small (for the largest ORLIB instance pmed40, the number of feasible solutions is(900
90

)
). Meanwhile, the scales of the Euclidean instances are much larger. For example,

for the largest instance (RL11849 with p = 1000), the number of feasible solutions is(11849
1000

)
, which makes it too hard for exact algorithms. As a compromise, we introduce

the best known results, and use the average percentage error rate as the measurement,
which is defined following (Hansen and Mladenovic 1997):

% err = Cavg − Copt

Copt
× 100, (12)

where Copt and Cavg indicate the best known upper bound and the average objective
value of solutions achieved from multiple runs.

Second, LK-search is also used to validate the effect of the proposed mechanisms
in this paper, in that LANS intends to improve the performance of LK-search by
exploiting the structure of the relaxed problem. By comparing the results of LANS
and LK-search, we hope to investigate whether the proposed mechanisms work. To
be more specific, the comparisons are conducted as follows. For each benchmark
instance, 100 random initial solutions are generated. Over these random solutions,
LK-search and LANS are executed to improve the quality, respectively. Note that
for the GAP instances, since local search may get trapped in non-feasible solutions
(Kochetov et al. 2005), we shall repeat the executions of LANS, until 100 feasible
output solutions are obtained. The numerical results are presented in Tables 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11 and 12. Each table is organized as follows. The first column
indicates the instances. The second column presents the best known objective value for
each instance. Then, in columns 3–6 and columns 7–10, the results of LK-search and
LANS are presented, respectively. For each algorithm, we give the minimum objective
value achieved (min), the average percentage error rate (% err ), the standard deviation
(SD), and the average running time measured in seconds (time). Finally, in column
11, we list the execution time of the Lagrangian relaxation pre-processing (measured
in seconds), which is required for LANS. For each instance, the better objective value
between the two algorithms is highlighted in boldface, and the shorter execution time
is underlined. From the numerical results, several interesting observations could be
drawn.

First, when we compare the best results achieved by LANS and LK-search, we
can find that LANS outperforms LK-search. For all the instances, LANS is able to
obtain solutions with objective value no worse than LK-search over 215 instances.
When we consider the average quality of the two algorithms (measured by % err ),
similar phenomena could be observed. The % err of LANS is better than or equal to
LK-search over 173 out of 215 benchmark instances.

Among the four classes of instances, LANS performs well over the ORLIB, the
Euclidean, and the RW instances, yet performs similarly as LK-search over the GAP
instances. The reason might be that, the GAP instances have larger duality gaps. In this
case, LANS might degenerate into LK-search, since LANS relies on the lower bound
to realize both the neighborhood reduction and the redundency detection mechanisms.

To confirm this, in Fig. 2 we illustrate the % err differences between LANS and
LK-search, against the duality gaps of the benchmark instances. Each sub-figure corre-
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Table 1 Numerical results over ORLIB instances

Id Best LK-search LANS
Min % err SD Time Min % err SD Time LR

1 5,819 5,819 0.00 0.00 < 0.01 5,819 0.00 0.00 < 0.01 0.01

2 4,093 4,093 0.17 5.76 < 0.01 4,093 0.18 5.82 < 0.01 0.03

3 4,250 4,250 0.00 0.00 < 0.01 4,250 0.00 0.00 < 0.01 0.02

4 3,034 3,034 0.15 5.36 < 0.01 3,034 0.03 2.55 < 0.01 0.02

5 1,355 1,355 0.07 1.41 < 0.01 1,355 0.01 0.59 < 0.01 0.02

6 7,824 7,824 0.00 0.00 0.02 7,824 0.00 0.00 0.02 0.06

7 5,631 5,631 0.00 0.00 0.01 5,631 0.00 0.00 0.01 0.05

8 4,445 4,445 0.00 0.00 0.01 4,445 0.00 0.40 < 0.01 0.04

9 2,734 2,734 0.42 6.91 < 0.01 2,734 0.22 6.35 < 0.01 0.02

10 1,255 1,255 0.24 3.85 0.01 1255 0.05 1.73 < 0.01 0.04

11 7,696 7,696 0.00 0.00 0.04 7,696 0.00 0.00 0.04 0.11

12 6,634 6,634 0.00 0.00 0.03 6,634 0.00 0.00 0.02 0.10

13 4,374 4,374 0.06 4.22 0.01 4,374 0.03 3.46 < 0.01 0.05

14 2,968 2,968 0.05 1.79 0.01 2,968 0.02 1.45 < 0.01 0.04

15 1,729 1,730 0.29 3.40 0.01 1,729 0.13 2.47 < 0.01 0.05

16 8,162 8,162 0.00 0.00 0.14 8,162 0.00 0.00 0.14 0.27

17 6,999 6,999 0.03 2.00 0.06 6,999 0.03 2.00 0.06 0.16

18 4,809 4,809 0.07 2.03 0.02 4,809 0.04 1.94 0.01 0.09

19 2,845 2,845 0.16 3.07 0.01 2,845 0.04 1.55 0.01 0.06

20 1,789 1,789 0.06 1.59 0.02 1,789 0.05 1.44 0.01 0.06

21 9,138 9,138 0.00 0.00 0.19 9,138 0.00 0.00 0.14 0.37

22 8,579 8,579 0.17 32.79 0.15 8,579 0.15 31.04 0.14 0.28

23 4,619 4,619 0.05 3.81 0.02 4,619 0.02 2.55 0.01 0.08

24 2,961 2,961 0.13 3.11 0.02 2,961 0.06 2.17 0.01 0.08

25 1,828 1,828 0.27 3.70 0.03 1,828 0.07 1.92 0.01 0.09

26 9,917 9,917 0.02 3.09 0.41 9,917 0.02 3.12 0.41 0.73

27 8,307 8,307 0.00 0.59 0.28 8,307 0.00 0.59 0.26 0.44

28 4,498 4,498 0.11 3.42 0.03 4,498 0.07 3.23 0.02 0.12

29 3,033 3,033 0.20 4.25 0.03 3,033 0.08 2.34 0.01 0.11

30 1,989 1,989 0.26 2.72 0.05 1,989 0.10 1.91 0.02 0.12

31 10,086 10,086 0.00 0.39 0.70 10,086 0.00 0.39 0.70 1.54

32 9,297 9,297 0.00 0.00 0.44 9,297 0.00 0.00 0.43 0.72

33 4,700 4,700 0.12 5.62 0.04 4,700 0.04 3.12 0.02 0.13

34 3,013 3,013 0.18 3.66 0.04 3,013 0.10 2.95 0.02 0.12

35 10,400 10,400 0.00 0.00 1.07 10,400 0.00 0.00 1.06 2.33

36 9,934 9,934 0.06 12.24 0.82 9,934 0.06 12.24 0.82 1.49

37 5,057 5,057 0.09 3.56 0.06 5,057 0.04 2.60 0.03 0.19

38 11,060 11,060 0.04 12.94 2.12 11,060 0.04 12.94 2.12 4.11

39 9,423 9,423 0.00 0.00 1.05 9,423 0.00 0.00 1.05 3.01

40 5,128 5,128 0.09 3.63 0.07 5,128 0.06 2.76 0.04 0.21
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Table 2 Numerical results over FL1400 instances

p Best LK-search LANS
Min % err SD Time Min % err SD Time LR

100 16,551.20 16,565.55 0.50 39.50 0.15 16,557.75 0.31 27.40 0.10 0.60

150 12,026.41 12,057.30 0.60 17.62 0.17 12,048.39 0.45 16.15 0.13 0.45

200 9,356.34 9,366.44 0.48 14.97 0.16 9,361.19 0.35 11.16 0.11 0.39

250 7,737.72 7,752.56 0.38 8.22 0.20 7,751.45 0.36 7.09 0.15 0.41

300 6,611.60 6,638.23 0.62 7.33 0.22 6,634.20 0.51 6.49 0.16 0.48

350 5,719.03 5,750.08 0.83 7.58 0.26 5,740.82 0.63 6.94 0.16 0.45

400 5,006.75 5,037.67 1.01 8.89 0.30 5,024.31 0.77 8.73 0.16 0.48

450 4,468.29 4,484.98 0.53 3.43 0.42 4,480.02 0.51 3.72 0.23 0.60

500 4,046.39 4,053.11 0.39 3.54 0.45 4,051.78 0.34 3.01 0.32 0.63

Table 3 Numerical results over PCB3038 instances

p Best LK-search LANS
Min % err SD Time Min % err SD Time LR

100 352,609.60 353,527.96 0.84 833.06 1.10 353,361.93 0.59 665.73 1.01 4.24

150 281,163.12 282,123.93 0.75 556.62 0.75 281,490.13 0.49 427.48 0.66 3.26

200 238,344.20 239,108.03 0.65 340.53 0.71 238,686.53 0.48 304.87 0.54 2.68

250 209,206.90 209,748.75 0.51 232.71 0.74 209,565.26 0.36 209.65 0.53 2.38

300 187,689.40 188,259.13 0.55 225.86 0.77 187,973.38 0.37 163.63 0.50 2.16

350 170,919.46 171,481.58 0.61 196.77 0.91 171,287.49 0.38 147.01 0.51 2.13

400 157,027.21 157,587.30 0.65 191.81 0.95 157,309.29 0.39 147.33 0.53 2.06

450 145,362.91 145,948.89 0.63 161.02 1.00 145,603.55 0.39 135.47 0.51 2.07

500 135,447.39 136,073.02 0.70 138.50 1.06 135,712.70 0.40 127.39 0.55 3.03

550 126,825.24 127,431.50 0.74 140.16 1.12 127,099.43 0.43 102.60 0.56 1.97

600 119,059.77 119,747.76 0.80 131.89 1.21 119,400.96 0.45 103.91 0.61 3.04

650 112,017.65 112,719.35 0.88 125.02 1.32 112,283.04 0.49 100.30 0.71 3.16

700 105,823.96 106,423.74 0.81 121.84 1.51 105,977.03 0.47 117.13 0.69 2.24

750 100,331.25 100,824.37 0.77 116.25 1.49 100,572.53 0.44 87.24 0.72 2.20

800 95,374.17 95,840.01 0.72 99.59 1.52 95,592.91 0.38 64.90 0.67 2.18

850 90,983.64 91,411.64 0.69 87.36 1.71 91,161.77 0.38 58.53 0.69 2.41

900 86,972.78 87,404.14 0.70 88.85 1.77 87,160.74 0.36 63.67 0.74 2.36

950 83,267.38 83,596.69 0.63 77.64 1.75 83,399.38 0.32 52.94 0.78 2.38

1000 79,842.01 80,118.71 0.54 69.30 1.79 79,948.56 0.24 39.94 0.76 2.30

sponds to a class of instances, which is organized as follows. The x axis represents the
relative duality gap ( Copt−L B

Copt
), and the y axis indicates the % err differences between

LANS and LK-search. In each sub-figure, a point (x, y) indicates that there exists an
instance with a relative duality gap x , and the difference between the % errs of LANS
and LK-search equals y (% err of LANS−% err of LK-search = y). Hence, the points
below the reference line (y = 0) indicates those instances over which LANS obtains
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Table 4 Numerical results over RL5934 instances

p Best LK-search LANS
Min % err SD Time Min % err SD Time LR

100 2,724,817.16 2,729,656.92 0.67 5,772.65 7.70 2729302.03 0.47 4784.59 7.75 23.34

150 2,147,756.39 2,156,499.26 0.79 4,684.61 4.71 2,151,399.47 0.53 3,516.48 4.54 16.35

200 1,807,411.06 1,814,421.88 0.74 2,919.59 3.81 1,811,137.79 0.51 2206.32 3.48 13.70

250 1,569,712.98 1,576,071.17 0.69 2,291.88 3.80 1,572,858.79 0.45 1903.36 3.40 12.54

300 1,393,951.74 1,399,685.39 0.73 2,152.44 4.18 1,397,012.47 0.46 1653.64 3.69 12.72

350 1,256,599.00 1,261,506.21 0.66 1,684.65 4.04 1,258,918.15 0.42 1144.51 3.62 11.76

400 1,145,271.28 1,149,920.37 0.67 1,246.40 4.45 1,147,892.71 0.43 1141.91 3.73 11.70

450 1,053,024.59 1,057,308.15 0.63 1,174.31 4.84 1,055,177.54 0.38 1,052.08 3.65 11.09

500 973,920.22 977,192.98 0.63 1,079.02 4.91 975,737.05 0.36 800.65 3.44 11.65

600 848,217.37 850,431.49 0.45 760.40 5.24 849,413.86 0.26 507.18 3.21 11.50

700 751,972.31 753,975.64 0.45 666.24 5.67 753,088.87 0.25 442.53 3.21 11.48

800 676,724.24 678,580.69 0.42 435.83 6.37 677,322.92 0.22 340.46 3.42 12.09

900 613,308.88 615,191.38 0.44 388.80 6.69 613,857.55 0.23 344.43 3.47 11.84

1000 558,783.56 560,581.26 0.44 394.31 7.20 559,364.27 0.21 319.07 3.71 12.23

1100 511,778.61 513,131.23 0.44 355.85 7.98 512,297.86 0.21 262.00 3.75 12.73

1200 470,264.28 471,625.72 0.43 335.35 8.95 470,705.96 0.19 219.08 3.79 13.63

1300 433,543.91 434,572.67 0.47 330.07 9.72 433,877.93 0.20 178.53 4.11 14.23

1400 401,820.03 403,059.87 0.43 262.21 9.60 402,084.12 0.15 167.16 4.03 13.99

1500 373,987.02 375,036.14 0.41 232.85 11.04 374,172.32 0.15 163.71 4.39 15.34

Table 5 Numerical results over RL11849 instances

p Best LK-search LANS
Min % err SD Time Min % err SD Time LR

100 5,850,644 5,860,966 0.65 14,401.81 126.39 5,864,272 0.56 10,155.18 111.13 192.63

200 4,003,810 4,019,337 0.79 5,893.12 27.44 4,014,161 0.58 5,338.73 26.80 68.74

300 3,194,525 3,211,764 0.76 3,736.71 21.63 3,202,958 0.57 3,729.65 20.08 51.54

400 2,696,221 2,711,079 0.76 2,880.46 22.21 2,705,049 0.51 2,282.23 20.79 48.96

500 2,357,273 2,368,283 0.75 3,064.31 23.16 2,364,045 0.50 2,419.94 20.72 46.68

600 2,112,870 2,122,920 0.70 2,106.15 24.93 2,119,268 0.47 1,553.08 22.45 46.04

700 1,922,903 1,931,007 0.68 1,901.52 27.87 1,927,946 0.46 1,366.48 23.50 47.37

800 1,766,512 1,774,600 0.71 1,760.77 29.68 1,771,267 0.45 1,225.49 24.18 48.25

900 1,636,053 1,643,916 0.62 1,367.18 34.77 1,640,117 0.39 1,038.06 25.29 52.99

1000 1,522,955 1,528,409 0.57 1,066.35 36.89 1,526,331 0.35 725.36 25.66 44.27

better solutions, since over these instances, LANS is able to achieve smaller % errs.
From Fig. 2, we could observe that the performance of LANS relies on the quality
of the lower bound. For example, over the ORLIB, Euclidean, and the RW instances
(Fig. 2a–c), the majority of the points lie below the reference line. Meanwhile, over
these three classes of instances, the relative duality gaps tend to be small. In contrast,
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Table 6 Numerical results over RW100 instances

p Best LK-search LANS
Min % err SD Time Min % err SD Time LR

10 530.00 530.00 2.04 8.05 0.01 530.00 1.99 8.59 < 0.01 0.03

20 277.00 277.00 1.24 4.27 < 0.01 277.00 0.94 4.09 < 0.01 0.01

30 213.00 213.00 0.52 1.23 < 0.01 213.00 0.44 1.13 < 0.01 0.01

40 187.00 187.00 0.09 0.38 < 0.01 187.00 0.23 0.57 < 0.01 0.01

50 172.00 172.00 0.15 0.48 < 0.01 172.00 0.12 0.41 < 0.01 0.01

Table 7 Numerical results over RW250 instances

p Best LK-search LANS
Min % err SD Time Min % err SD Time LR

10 3,691.00 3,691.00 2.23 74.15 0.08 3,691.00 2.32 78.06 0.08 0.14

25 1,360.00 1,360.00 2.98 23.12 0.03 1,364.00 3.39 25.39 0.03 0.06

50 713.00 713.00 1.63 5.01 0.01 713.00 1.54 5.70 0.01 0.04

75 523.00 523.00 0.78 3.05 0.01 523.00 0.44 1.99 < 0.01 0.03

100 444.00 444.00 0.12 0.66 0.01 444.00 0.17 0.75 < 0.01 0.03

125 411.00 411.00 0.06 0.49 0.01 411.00 0.08 0.51 < 0.01 0.03

Table 8 Numerical results over RW500 instances

p Best LK-search LANS
Min % err SD Time Min % err SD Time LR

10 16,108.00 16,135.00 2.50 257.47 0.91 16,135.00 2.47 244.87 0.91 1.15

25 5,626.00 5,723.00 4.09 78.28 0.35 5,716.00 4.35 74.92 0.35 0.45

50 2,626.00 2,631.00 2.42 32.99 0.10 2,632.00 2.29 30.86 0.10 0.16

75 1,757.00 1,757.00 1.81 17.05 0.06 1759.00 1.64 16.03 0.05 0.12

100 1,379.00 1,381.00 1.13 7.45 0.04 1,382.00 1.05 6.65 0.04 0.10

150 1,024.00 1,025.00 0.63 3.57 0.03 1,024.00 0.36 2.32 0.01 0.08

200 893.00 893.00 0.20 1.38 0.03 893.00 0.11 0.89 0.01 0.07

250 833.00 833.00 0.11 0.76 0.03 833.00 0.03 0.50 0.01 0.07

over the GAP instances (Fig. 2d), the relative duality gaps are much larger. Conse-
quently, the proportion of the points lying above the reference line is higher than those
in Fig. 2a–c. This phenomenon to some extent explains why LANS performs similarly
as LK-search over the GAP instances.

To obtain a more intuitive impression, we visually present the % err comparison
between LANS and LK-search in Fig. 3a. In the figure, the x axis and the y axis indicate
the % err obtained by LANS and LK-search, respectively. The comparison over each
instance is represented as a point (x, y), which means that over the corresponding
instance, the % errs of LANS and LK-search are x % and y %, respectively. We also
plot the reference line y = x in the figure. Hence, the points above the reference line
indicate the benchmark instances over which LANS outperforms LK-search. From the
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Table 9 Numerical results over RW1000 instances

p Best LK-search LANS
Min % err SD Time Min % err SD Time LR

10 67,811.00 67,811.00 2.75 1,144.31 14.89 67,811.00 2.71 1142.57 14.93 18.17

25 24,896.00 24,997.00 3.04 342.71 8.34 24,896.00 2.72 324.05 8.41 9.57

50 11,259.00 11,301.00 3.29 168.99 1.56 11,332.00 3.08 151.48 1.46 2.01

75 7,134.00 7,199.00 3.11 71.27 0.55 7,179.00 3.24 76.09 0.54 0.75

100 5,210.00 5,238.00 2.60 56.11 0.34 5,235.00 2.74 57.98 0.33 0.49

200 2,704.00 2,714.00 1.25 12.56 0.18 2,714.00 1.15 9.75 0.16 0.31

300 2,018.00 2,018.00 0.28 3.21 0.16 2,018.00 0.21 2.64 0.05 0.26

400 1,734.00 1,734.00 0.12 1.27 0.15 1,734.00 0.07 1.13 0.04 0.24

500 1,614.00 1,614.00 0.18 1.85 0.13 1,614.00 0.06 1.16 0.04 0.22

figure, it is obvious that LANS is able to achieve better % err over the majority of the
instances. To confirm this, we employ the nonparametric Wilcoxon’s signed rank test to
check the potential differences in performance between the two algorithms. We set the
null hypothesis to be that both algorithms in comparison have similar performance,
and consider the 95 % confidence level. The result returned by the hypothesis test
shows that LANS statistically outperforms LK-search, in terms of average percentage
error rate (p value < 1× 10−4).

Then we proceed to compare the execution time of the two algorithms. Similar
with Fig. 3a, we illustrate the time comparison between LANS and LK-search in
Fig. 3b. In the figure, the comparison results are organized in the same way as Fig. 3a,
except that the axes represent the average running time of the two algorithms. From
the figure, we could see that LANS is faster than LK-search. With the Wilcoxon’s
test, we state that LANS is faster than LK-search, at 95 % confidence level (p value
< 1 × 10−4). Meanwhile, we should note that LANS requires that the Lagrangian
relaxation procedure is executed as a pre-processing step. We argue that despite the
extra computational overhead, the Lagrangian relaxation execution is worthy, based
on the following reasons. On the one hand, in LANS, the pre-processing is required
only once. On the other hand, local search such as LANS and LK-search is usually
embedded in other algorithms. In these scenarios, local search would be repeatedly
applied. Consequently, the computational overhead introduced by the pre-processing
is amortized over the multiple executions of local search.

4.2 LANS as an embedded subroutine

In Sect. 4.1, the performance of LANS has been demonstrated to be effective, when
executed as a stand-alone algorithm. However, it is more often that these local search
algorithms be embedded into other heuristics. Hence, in this subsection, we intend to
evaluate the performance of LANS as an embedded subroutine.

We employ the Euclidean (FL1400, PCB3038, and RL5934), the RW, and the GAP
instances to conduct the experiment. We do not consider the other instances for the

123



Boosting local search with Lagrangian relaxation 607

Table 10 Numerical results over GAP-A instances

Instance Best LK-search LANS
Min % err SD Time Min % err SD Time LR

1,032PM 127.00 127.00 9.08 8.57 < 0.01 127.00 8.24 7.60 < 0.01 0.01

1,132PM 163.00 163.00 6.84 7.99 < 0.01 163.00 7.85 7.86 < 0.01 0.01

1,232PM 123.00 123.00 14.36 12.12 < 0.01 123.00 14.07 11.44 < 0.01 0.01

1,332PM 164.00 164.00 1.74 2.92 < 0.01 164.00 1.21 2.50 < 0.01 0.01

1,432PM 150.00 150.00 4.38 5.56 < 0.01 150.00 3.99 5.43 < 0.01 0.01

1,532PM 158.00 158.00 0.00 0.00 < 0.01 158.00 0.00 0.00 < 0.01 0.01

1,632PM 141.00 141.00 1.76 3.78 < 0.01 141.00 2.10 4.09 < 0.01 0.01

1,732PM 157.00 157.00 0.74 0.99 < 0.01 157.00 0.74 0.99 < 0.01 0.01

1,832PM 135.00 135.00 7.80 6.92 < 0.01 135.00 7.93 6.84 < 0.01 0.02

1,932PM 146.00 146.00 2.72 6.61 < 0.01 146.00 2.13 5.48 < 0.01 0.02

2,032PM 150.00 150.00 8.73 7.47 < 0.01 150.00 9.52 7.66 < 0.01 0.01

2,132PM 140.00 140.00 4.38 6.02 < 0.01 140.00 4.06 5.39 < 0.01 0.01

2,232PM 145.00 145.00 0.00 0.00 < 0.01 145.00 0.00 0.00 < 0.01 0.02

2,332PM 172.00 172.00 1.12 2.45 < 0.01 172.00 1.05 2.41 < 0.01 0.01

2,432PM 137.00 137.00 9.05 8.54 < 0.01 137.00 8.66 7.43 < 0.01 0.01

2,532PM 153.00 153.00 2.04 6.48 < 0.01 153.00 1.31 5.45 < 0.01 0.01

2,632PM 164.00 164.00 4.35 4.91 < 0.01 164.00 3.75 4.39 < 0.01 0.01

2,732PM 123.00 123.00 18.31 14.33 < 0.01 123.00 17.68 15.29 < 0.01 0.01

2,832PM 145.00 145.00 6.07 6.00 < 0.01 145.00 5.43 4.61 < 0.01 0.01

2,932PM 155.00 155.00 2.36 7.74 < 0.01 155.00 2.25 7.07 < 0.01 0.02

3,032PM 113.00 113.00 9.66 10.39 < 0.01 113.00 7.79 8.99 < 0.01 0.02

3,132PM 130.00 130.00 11.32 10.84 < 0.01 130.00 9.98 11.19 < 0.01 0.01

3,232PM 157.00 157.00 10.91 4.60 < 0.01 157.00 10.38 4.36 < 0.01 0.01

332PM 154.00 154.00 4.23 6.00 < 0.01 154.00 4.21 6.52 < 0.01 0.01

432PM 155.00 155.00 1.12 4.24 < 0.01 155.00 1.32 4.53 < 0.01 0.01

532PM 150.00 150.00 4.33 4.80 < 0.01 150.00 3.62 5.02 < 0.01 0.01

632PM 162.00 162.00 1.96 4.32 < 0.01 162.00 1.85 3.83 < 0.01 0.01

732PM 157.00 157.00 0.00 0.00 < 0.01 157.00 0.00 0.00 < 0.01 0.01

832PM 136.00 136.00 5.78 10.08 < 0.01 136.00 4.54 9.26 < 0.01 0.02

932PM 133.00 133.00 7.24 10.30 < 0.01 133.00 5.89 9.74 < 0.01 0.02

following reasons. For the ORLIB instances, applying LANS over random initial
solutions could achieve the optimality (see Sect. 4.1). Besides, the RL11849 instances
are not incorporated due to their scales. As for the framework in which LANS is to
be embedded, we adopt the ALCMA, due to its effectiveness. In the original version
of ALCMA (Ren et al. 2012a), interchange is employed as the embedded local search
subroutine. In this subsection, we replace interchange with LANS, and obtain the
variant of ALCMA (denoted as ALCMAL AN S).

For each benchmark instance, we independently execute ALCMAL AN S for 9 times,
which follows the experimental design of the existing work (Hansen and Mladenovic
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Table 11 Numerical results over GAP-B instances

Instance Best LK-search LANS
Min % err SD Time Min % err SD Time LR

1,031PM 165.00 165.00 0.00 0.00 < 0.01 165.00 0.00 0.00 < 0.01 0.02

1,131PM 162.00 162.00 0.36 1.79 < 0.01 162.00 0.44 1.96 < 0.01 0.02

1,231PM 136.00 136.00 11.40 8.26 < 0.01 136.00 10.97 7.15 < 0.01 0.02

1,331PM 135.00 135.00 12.39 9.38 < 0.01 135.00 13.59 9.08 < 0.01 0.02

1,431PM 129.00 131.00 10.98 10.74 < 0.01 129.00 10.04 11.18 < 0.01 0.02

1,531PM 130.00 130.00 11.85 9.71 < 0.01 130.00 13.65 8.49 < 0.01 0.02

1,631PM 140.00 140.00 12.61 8.30 < 0.01 140.00 12.67 9.01 < 0.01 0.01

1,731PM 174.00 174.00 1.54 7.05 < 0.01 174.00 1.81 7.54 < 0.01 0.02

1,831PM 134.00 134.00 10.52 11.68 < 0.01 134.00 12.15 11.33 < 0.01 0.02

1,931PM 136.00 136.00 8.28 9.27 < 0.01 136.00 8.60 8.94 < 0.01 0.02

2,031PM 131.00 131.00 11.36 12.00 < 0.01 131.00 9.05 8.92 < 0.01 0.02

2,131PM 126.00 126.00 12.29 11.75 < 0.01 126.00 11.90 10.33 < 0.01 0.02

2,231PM 179.00 179.00 0.00 0.00 < 0.01 179.00 0.00 0.00 < 0.01 0.02

2,331PM 134.00 134.00 12.90 11.27 < 0.01 134.00 14.19 11.23 < 0.01 0.02

2,431PM 137.00 137.00 8.04 9.41 < 0.01 137.00 7.41 8.34 < 0.01 0.02

2,531PM 124.00 124.00 12.34 9.59 < 0.01 124.00 11.59 10.28 < 0.01 0.02

2,631PM 131.00 131.00 16.91 9.72 < 0.01 131.00 14.97 10.05 < 0.01 0.02

2,731PM 159.00 159.00 0.00 0.00 < 0.01 159.00 0.00 0.00 < 0.01 0.02

2,831PM 151.00 151.00 0.00 0.00 < 0.01 151.00 0.00 0.00 < 0.01 0.02

2,931PM 132.00 132.00 12.50 8.41 < 0.01 137.00 11.57 7.68 < 0.01 0.01

3,031PM 144.00 144.00 7.69 7.36 < 0.01 144.00 7.31 7.36 < 0.01 0.02

3,131PM 158.00 158.00 11.32 10.75 < 0.01 158.00 10.99 9.70 < 0.01 0.02

3,231PM 125.00 125.00 17.71 14.09 < 0.01 125.00 17.43 16.02 < 0.01 0.02

331PM 123.00 135.00 22.39 10.50 < 0.01 123.00 21.36 10.36 < 0.01 0.02

431PM 132.00 132.00 12.56 10.02 < 0.01 132.00 15.30 10.97 < 0.01 0.02

531PM 135.00 135.00 10.30 10.64 < 0.01 135.00 10.35 10.61 < 0.01 0.02

631PM 140.00 140.00 8.49 8.40 < 0.01 140.00 9.09 9.70 < 0.01 0.02

731PM 130.00 130.00 13.70 10.50 < 0.01 130.00 14.36 11.26 < 0.01 0.02

831PM 138.00 138.00 9.53 8.73 < 0.01 138.00 9.68 8.12 < 0.01 0.02

931PM 172.00 172.00 0.00 0.00 < 0.01 172.00 0.00 0.00 < 0.01 0.02

1997; Resende and Werneck 2004; Ren et al. 2012a). Over the 9 executions, we observe
that ALCMAL AN S is able to achieve very competitive performance over the Euclid-
ean instances, yet is not quite effective over the RW instances and the GAP instances.
Over the Euclidean instances, the % err of ALCMAL AN S is always less than 0.09,
while over the GAP instances, the maximum % err is larger than 10. In particular,
ALCMAL AN S updates the best known results in the literature, over 6 instances. There-
fore, we present the numerical results over these instances in Table 13. 5 The table is

5 More comprehensive numerical results could be found at http://oscar-lab.org/people/~zren/lans.
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Table 12 Numerical results over GAP-C instances

Instance Best LK-search LANS
Min % err SD Time Min % err SD Time LR

1,033PM 138.00 138.00 10.17 12.67 < 0.01 138.00 11.57 11.99 < 0.01 0.01

1,133PM 147.00 147.00 9.53 9.09 < 0.01 147.00 10.44 9.46 < 0.01 0.01

1,233PM 142.00 142.00 10.87 8.59 < 0.01 142.00 10.54 8.91 < 0.01 0.01

1,333PM 140.00 140.00 13.95 12.42 < 0.01 140.00 11.85 10.92 < 0.01 0.02

1,433PM 152.00 152.00 8.14 9.54 < 0.01 152.00 8.43 9.23 < 0.01 0.01

1,533PM 133.00 133.00 18.25 12.88 < 0.01 133.00 19.17 12.44 < 0.01 0.02

1,633PM 141.00 141.00 9.77 9.77 < 0.01 141.00 8.45 8.42 < 0.01 0.01

1,733PM 134.00 134.00 12.03 10.01 < 0.01 134.00 12.94 11.57 < 0.01 0.01

1,833PM 139.00 139.00 14.01 9.11 < 0.01 144.00 13.26 7.95 < 0.01 0.02

1,933PM 137.00 137.00 13.04 11.06 < 0.01 137.00 13.27 10.62 < 0.01 0.01

2,033PM 140.00 140.00 16.55 10.49 < 0.01 140.00 13.69 11.24 < 0.01 0.01

2,133PM 138.00 138.00 17.32 9.93 < 0.01 138.00 19.43 11.51 < 0.01 0.01

2,233PM 121.00 121.00 17.19 15.00 < 0.01 121.00 17.65 15.03 < 0.01 0.02

2,333PM 133.00 133.00 16.38 11.35 < 0.01 133.00 17.83 10.58 < 0.01 0.01

2,433PM 139.00 139.00 11.17 10.88 < 0.01 139.00 10.97 9.32 < 0.01 0.01

2,533PM 131.00 131.00 15.86 11.80 < 0.01 131.00 16.27 11.61 < 0.01 0.01

2,633PM 132.00 132.00 19.61 12.46 < 0.01 132.00 17.87 12.33 < 0.01 0.01

2,733PM 139.00 139.00 17.05 12.80 < 0.01 139.00 15.98 12.90 < 0.01 0.02

2,833PM 137.00 137.00 13.25 12.64 < 0.01 137.00 12.50 12.15 < 0.01 0.01

2,933PM 124.00 124.00 20.13 15.42 < 0.01 124.00 19.34 14.00 < 0.01 0.01

3,033PM 137.00 137.00 11.74 10.55 < 0.01 137.00 12.36 8.80 < 0.01 0.01

3,133PM 141.00 141.00 12.86 9.56 < 0.01 141.00 11.28 9.66 < 0.01 0.02

3,233PM 129.00 129.00 14.09 10.81 < 0.01 129.00 14.19 9.97 < 0.01 0.01

333PM 147.00 147.00 11.67 9.44 < 0.01 147.00 11.51 9.13 < 0.01 0.01

433PM 145.00 145.00 11.49 9.92 < 0.01 145.00 10.32 11.66 < 0.01 0.01

533PM 142.00 142.00 10.07 11.42 < 0.01 142.00 10.27 12.51 < 0.01 0.01

633PM 144.00 144.00 10.21 8.39 < 0.01 144.00 10.71 10.35 < 0.01 0.01

733PM 137.00 137.00 14.61 10.73 < 0.01 137.00 13.74 8.96 < 0.01 0.02

833PM 144.00 144.00 14.29 8.23 < 0.01 144.00 13.03 9.72 < 0.01 0.01

933PM 130.00 130.00 14.82 13.95 < 0.01 130.00 15.77 14.61 < 0.01 0.02

organized similarly as in Sect. 4.1, i.e, we present the minimum objective value, % err ,
SD, and average running time. For comparison, we also list the numerical results of
ALCMAL K , which is obtained by embedding LK-search into ALCMA.

From Table 13, we could observe that, when embedded into ALCMA, the per-
formance of LANS could be further improved, especially over the large Euclidean
instances. Over the instances, ALCMAL AN S dominates ALCMAL K in terms of both
effectiveness and efficiency. From the effectiveness perspective, the best solutions
achieved by ALCMAL AN S update the best known results in the literature. From
the efficiency perspective, ALCMAL AN S requires much less time compared with
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Fig. 2 % err differences versus relative duality gap
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Fig. 3 % err and time comparison, between LANS and LK-search

ALCMAL K . These observations to some extent demonstrate the performance of
LANS.

4.3 Run-time distribution analysis

In Sects. 4.1 and 4.2, we have demonstrated the effectiveness of LANS, especially over
the large-scale Euclidean instances. To gain more insights about the dynamic charac-
teristics of LANS and LK-search, the run-time distribution analysis is introduced. The
run-time distribution, also known as time to target analysis (Hoos 2005; Aiex et al.
2007), is usually employed to capture various properties of heuristic algorithms, such
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Table 13 Numerical results for ALCMAL K and ALCMAL AN S over typical instances

Instances p Best ALCMAL K ALCMAL AN S

Min % err SD Time Min % err SD Time

FL1400 300 6,611.60 6,610.72 0.03 0.55 221.69 6,610.71 <0.01 0.88 117.30

PCB3038 300 187,689.40 187,686.24 <0.01 5.45 462.90 187,686.24 <0.01 5.09 230.75

PCB3038 600 119,059.77 119,059.77 <0.01 0.16 445.32 119,058.09 <0.01 0.91 144.49

PCB3038 700 105,823.96 105,823.97 <0.01 0.30 565.08 105,822.49 <0.01 0.78 228.58

RL5934 700 751,972.30 751,970.11 <0.01 3.27 3,376.85 751,970.10 <0.01 0.26 1,728.09

RL5934 1,100 511,778.60 511,778.61 <0.01 0.00 4,063.42 511,764.80 <0.01 4.61 2,017.19

as the convergence speed, the average solution quality, and so on. More specifically,
the comparisons are carried out by running each algorithm over typical benchmark
instances for multiple times, and examining the cumulative completions that the algo-
rithm achieves a certain quality threshold as time elapses. In this subsection, we intend
to investigate the reasons why LANS works, by examine the run-time behaviors of
LANS and LK-search, as well as two other variant versions of LK-search.

As for the typical benchmark instances, we employ PCB3038 (p = 300) and
RL5934 (p = 500). We do not consider the other instances (such as the instances from
ORLIB, RW, and GAP) because their scales are relatively small, and the local search
algorithms terminate too fast. For the algorithms in comparison, besides LANS and
LK-search, we consider two variants of LK-search, which combine LK-search with
only one mechanism of neighborhood reduction and redundancy detection, respec-
tively. Hence, these two variants are indicated as LK+NR and LK+RD. The purpose
of introducing LK+NR and LK+RD in this experiment is to investigate the impact of
the two mechanisms on LANS.

Over the instances, 100 random initial solutions are firstly generated, similarly as the
experiment in Sect. 4.1. Then, over each random solution, each local search algorithm
is executed independently. For each algorithm, its run-time behavior is represented
by a run-time distribution curve determined from the 100 runs of the algorithm. In
Fig. 4, the run-time distribution curve of each algorithm is illustrated as follows. The x
axis indicates the log-scale time, and the y axis represents the cumulative probability
that the algorithm achieves the predefined solution quality threshold. In this study, the
threshold is set to be 0.05 % over the best known upper bound, because during the
experiments, we find this threshold effective in distinguishing the performances of the
algorithms.

From the run-time distribution plots, we could draw the following observations.
First, similar with the numerical results, over both the instances, LANS shows a

clear dominance over LK-search, in terms of both effectiveness and the efficiency.
In Fig. 4a, b, the distribution curves of LANS lie above the curves of LK-search in
comparison.

Second, when we compare LK+NR and LK-search, we can see that the neighbor-
hood reduction mechanism significantly improves the solution quality. For example, in
Fig. 4a, the distribution curve of LK+NR is alway above that of LK-search. Especially,
when the algorithms terminate, the cumulative probability of LK+NR is over 90 %,
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Fig. 4 Run-time distribution plots for LANS, LK-search, and its variants

while the corresponding probability of LK-search is below 40 %. Similar phenomenon
could be observed when we compare LANS and LK+RD, in that these two algorithms
differ from each other only in the neighborhood reduction mechanism.

Third, comparing LK+RD and LK-search we observe that, with the redundancy
detection mechanism, the distribution curve of LK+RD shifts to the left of LK-search.
This phenomenon implies that, the redundancy detection mechanism is helpful in
accelerating the local search procedure. Similar observations could be found when we
compare LANS and LK+NR.

Interestingly, from Fig. 4, it seems that the effect caused by the redundancy detec-
tion mechanism is not as significant as that caused by the neighborhood reduction
mechanism, since the distribution curves of LANS and LK+NR are close to each
other. However, when we compare the execution time of the algorithms in Fig. 5, we
could observe the influence of the redundancy detection mechanism. In terms of the
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Fig. 5 Execution time comparison between LANS, LK-search, and its variants, using Box-Whisker plot

average execution time, LANS is much faster than LK+NR, and LK-search is slower
than LK+RD. These observations could be drawn over both the benchmark instances,
which to some extent demonstrate the usefulness of the redundancy detection mech-
anism.

In summary, with the run-time distribution analysis, we demonstrate that both the
neighborhood reduction and the redundancy detection mechanisms are able to improve
the performance of LK-search. By integrating these two mechanisms and LK-search,
LANS is able to achieve competitive results.

5 Conclusion and future work

In this paper, we investigate the approaches of exploiting the information of the relaxed
problem to guide the local search procedure. Using LK-search for the p-median prob-
lem as a case study, we propose the Lagrangian relaxation Assisted Neighborhood
Search (LANS). The contributions of this paper could be summarized as follows.

• We propose a neighborhood reduction mechanism, to avoid the search from being
trapped in low quality attraction basins.
• We develop a redundancy detection method, to detect and terminate the neighbor-

hood traversal that could not find promising solutions.
• Extensive experiments demonstrate both the effectiveness and the efficiency of

the proposed local search. Statistical tests show that LANS compares favorably
to LK-search, which is among the state-of-the-art local search algorithms for the
p-median problem.
• By embedding LANS into Accelerated Limit Crossing based Multilevel Algorithm

(ALCMA), several best known results over benchmark instances could be updated.

For the future work, we would like to investigate the following issues. First, despite
the effectiveness and the efficiency of LANS, we admit that the Lagrangian relaxation-
based pre-process introduces extra computational overhead. The algorithm would
be more efficient if the pre-processing could be further accelerated. Second, in the

123



614 Z. Ren et al.

numerical results, we observe that LANS performs well over most instances, but
behaves similarly as LK-search over the GAP instances, due to the large duality gaps
of these instances. In the future, we would like to investigate the strength and the
weakness of LANS in more depth, using techniques like meta-learning (Smith-Miles
2009). Third, we are interested in generalizing this approach to other combinatorial
optimization problems.
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