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ABSTRACT Application programming interface (API)-related questions are increasingly posted and
discussed by developers in popular question and answer forums, such as Stack Overflow. However, their
extremely long resolution time seriously delays the working schedules of developers. Despite researchers
have investigated how to automatically resolve API-related questions by recommending correct APIs for
them, there is still much room for additional improvement. In this paper, we propose a novel approach
of recommending APIs for API-related questions based on API specifications and historical resolved
questions (RASH). Given a new API-related question, RASH recommends APIs for it guided by two central
observations. First, the more lexically similar the functional description in an API’s specification is to the
new question, the more likely that the API can resolve the new question. Second, the APIs that have resolved
more historical similar questions can also help to resolve the new question. To verify the effectiveness of
RASH, we construct and publish a corpus containing 1234 API-related questions with their correct APIs
from Stack Overflow, and conduct extensive experiments over it. The experimental results show that RASH
is relatively stable and robust to a different quality of questions. In addition, RASH hits nearly 70% correct
APIs and outperforms the state-of-the-art approach by 15.64% when recommending 15 APIs for each
question.

INDEX TERMS Application programming interfaces, information retrieval, reccommendation system, stack

overflow.

I. INTRODUCTION

OFTWARE developers tend to reuse Application Pro-

gramming Interfaces (APIs) in existing frameworks and
libraries to facilitate their development process [1]-[3]. When
they have no idea about what exact APIs to use or how to
use specific APIs properly, they usually submit questions
illustrating the API usage problems to seek professional
help in Stack Overflow, a popular technical Question and
Answer (Q&A) forum attracting over 50 million visitors each
month [4]-[7]. However, resolving these API related ques-
tions may take a very long time, since it is difficult to propose
an accepted answer, which needs to be discussed continu-
ously by developers [8]. For example, the average resolution
time of API related questions in the constructed corpus is
nearly 17 days, which is 3 days longer than that of other
questions (see Section II.B). Such a long resolution time may

heavily decrease the working efficiency and seriously delay
the working schedules of developers [9], [10]. Furthermore,
API related questions usually receive wide attentions from
developers who may encounter the same or similar API usage
problems. For instance, an API related question is viewed
more than 4,600 times on average, which is twice as many
as that of other questions (see Section II.B). Hence, automati-
cally resolving API related questions could bring tremendous
benefits for developers.

Recently, a new task named Question-to-API recommen-
dation (Q2API) is issued [11]. When a new API related
question is submitted to Stack Overflow, this task aims to
automatically resolve it by recommending correct APIs,
whose API specifications have non-trivial semantic overlap
with the accepted answer. Therefore, by checking the recom-
mended APIs and reading through their API specifications,
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the submitter can efficiently program with the correct APIs or
easily think out the solution on his/her own, even before the
accepted answer is posted [11]. In such a way, addressing this
task could accelerate the resolution of API related questions
and boost submitters’ productivity.

In the literature, Ye et al. propose a seminal approach
towards addressing the Q2 API task based on the word embed-
ding technique [11]. Given a new API related question,
this approach aims to rank all the APIs in the same pro-
gramming language (e.g., Java) as the new question and
recommend the top ranked APIs for it. More specifically,
this approach first achieves three features for each API by
calculating similarities between this new question and the
functional description in API specifications, including the
cosine similarity and two word embedding based similarities.
Then, a weighting scheme is employed to calculate the final
score for each API by combining the three features, and
the weight of each feature is achieved by a leaning-to-rank
system. At last, all the APIs are ranked in a descending order
based on their final scores, and the top ranked APIs are
recommended. Evaluated over a publicly unavailable corpus,
this approach is superior to the simple method, which only
uses the cosine similarity to rank APIs. However, the existing
approach does not leverage the domain specific knowledge to
address the Q2API task. Hence, there is still much room for
improvement.

In this paper, we propose a novel approach of Recommend-
ing APIs for API related questions based on API Specifica-
tions and Historical resolved questions (RASH). In contrast
to the existing approach, RASH fully leverages the domain
specific knowledge in Stack Overflow to better address the
Q2API task. By observing plentiful API related questions
with their correct APIs in Stack Overflow, we find that if
more overlapping words are contained in both the new API
related question and the functional description in an API’s
specification, the API is highly likely to resolve the new
question (see Section II.C). In addition, similar questions can
be resolved by similar or the same correct APIs. Hence, we
can leverage the correct APIs that have resolved historical
similar questions to resolve the new API related question
(see Section II.C). These important observations motivate us
to consider and better leverage the valuable information in
API specifications and historical resolved questions.

More specifically, RASH works as follows. Given a new
API related question targeted towards a specific program-
ming language (e.g., Java), RASH first achieves two correla-
tion scores for each API in the same programming language
by leveraging both API specifications and historical resolved
questions. RASH obtains the first correlation score by cal-
culating the cosine similarity between the new question and
the functional description in each API’s specification. Next,
RASH ranks all the APIs based on their correlation scores and
selects the top 500 APIs as candidate APIs, which are likely to
be correct APIs. Meanwhile, RASH also achieves the second
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correlation score for each API by analyzing similar questions
that have been resolved in history with their correct APIs.
Then, after normalizing the two correlation scores, RASH
calculates their arithmetic mean and treats it as the final
score for each API. Finally, RASH employs an API ranking
scheme based on candidate APIs with their final scores, and
recommends the top ranked APIs to the submitter of the new
API related question.

We collect and construct a corpus containing 1,234 API
related questions with their correct APIs from Stack Over-
flow, and open it to the public [12]. We conduct extensive
experiments over the corpus to evaluate the performance of
RASH. From the experimental results we can see that, in
terms of parameter selection, RASH achieves the best results
when the number of candidate APIs is equal to 500. From the
perspective of robustness, RASH performs similarly over the
high-quality questions and the low-quality questions, which
indicates that RASH is insensitive to different quality of
API related questions. In terms of stability, the performance
of RASH is steadily increasing when the number of API
related questions is accumulated large enough, i.e., 200. In
terms of effectiveness, RASH achieves the Hit@15 (Hit Rate
when recommending 15 APIs) of 69.12% and outperforms
the state-of-the-art approach by 15.64%.

In summary, this paper makes the following contributions:

o We propose a novel approach named RASH, which
leverages the information in both API specifications
and historical resolved questions, to better recommend
correct APIs for API related questions.

« Experiments over the constructed corpus show that
RASH outperforms the state-of-the-art approach by
15.64% in terms of Hit@15.

o We construct a corpus containing 1,234 API related
questions with their correct APIs from Stack Overflow
and open it to the public [12]. Other researchers can
benefit from it for further research.

The remainder of the paper is organized as follows. In
Section II, we first show the motivation of this study. We
illustrate the framework of RASH with its main components
in Section III. Then, we elaborate the experimental setup and
experimental results in Section IV and Section V, respec-
tively. Next, in Section VI and Section VII, we introduce
the threat to validity and related work. At last, we make a
conclusion and mention future work in Section VIII.

Il. MOTIVATION

In this section, we first present some preliminaries about
how submitters post API related questions in Stack Over-
flow. Next, we demonstrate the importance of API related
questions in Stack Overflow, which motivates us to propose
an approach to address the Q2API task. Finally, we show
our observations on API related questions, which motivate us
to better leverage the information in API specifications and
historical resolved questions.
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FIGURE 1. A Q&A pair example.

A. PRELIMINARIES

Fig. 1 shows a Q&A pair example' with several essen-
tial items, such as question title, question body, and tags.
Generally, when a developer (submitter) encounters an API
usage problem and wants to seek professional help from
experienced developers, he/she needs to follow a series of
guidelines to submit a new question in Stack Overflow. First,
the submitter should summarize and refine the key point of
the problem using one sentence, which is called question title.
Then, the submitter should specify the details of the problem,
which is called question body, in natural language with some
code samples (if necessary). In addition, the submitter is
required to mark this new question with some keywords,
which are called rags, to categorize this new question. Other
developers can answer the new question (answer), vote for
the question or the answer based on its quality (user score of
the question or the answer), and mark it as favorite (favorite
count). Stack Overflow also automatically records the view
times of the new question (view count). After verifying the
posted answers, the submitter can select one of them as the
solution and mark it as accepted (accepted answer). However,
the submitter may have to wait an extremely long time until
the accepted answer is posted, thus decreasing the working
efficiency of the submitter [8].

As shown in Fig. 1, BenM asks a question on Feb. 9, 2010
to find a good API, which can implement CachedRowSet
other than the proprietary Sun one. After an extremely long
time until Apr. 14, 2014, PaoloC posts an answer which is
accepted. We can see that it takes more than 4 years to resolve
this question. In addition, there is a hyperlink to Java API

1 https://stackoverflow.com/questions/2228462/are-there-any-good-
cachedrowset-implementations-other-than-the-proprietary-sun-o.
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specifications in the accepted answer. By parsing the hyper-
link, we can find that the javax.sql.rowset.RowSetProvider
API is the correct API to resolve this question. In addition,
this Q&A pair has been viewed 5,531 times, which implies
that abundant developers may encounter the same or similar
API usage problems.

B. THE IMPORTANCE OF API RELATED QUESTIONS

Developers tend to reuse APIs in existing libraries to help
them program [13], [14]. Hence, they may encounter var-
ious API usage problems when programming with APIs.
It is difficult for developers to learn APIs by themselves,
and seeking help from experienced developers by asking
or searching questions in Stack Overflow is a common
practice [4]-[6]. In such a way, API related questions usually
receive wide attentions from developers, thus making API
related questions more important than other questions.

TABLE 1. Comparison between API related questions and other
questions.

Question Avg. Avg. Avg. Avg. Avg.
Type Question | Answer View Favorite | Resolution
Score Score Count Count Time (days)

API Related | 4.26 5.26 4,609 0.83 16.97

Others 1.96 3.13 2,225 0.62 13.69

To demonstrate the importance of API related questions,
we compare Java API related questions in the constructed
corpus (see Section IV.B) against other Java tagged questions
with several characteristics shown in Table 1. Obviously,
both API related questions and their answers achieve higher
average user scores than other Java tagged questions and their
answers. For example, the average user score of API related
questions is 4.26. In contrast, it is only 1.96 for other Java
tagged questions. The average view count for API related
questions is more than 4.6 thousand, which is more than twice
as many as that of other Java tagged questions. The average
resolution time of API related questions is nearly 17 days and
3 days longer than that of other Java tagged questions.

In summary, API related questions achieve higher quality,
attract more developers, and take longer time to be resolved.
Hence, automatically resolving API related questions is sig-
nificant to abundant developers.

C. OBSERVATIONS ON API RELATED QUESTIONS

After observing plentiful API related questions, we have the
following two observations, based on which we design our
novel approach RASH.

1) The more lexically similar the functional description
in an API’s specification is to the new API related
question, the more likely that the API can resolve this
new question.

2) The APIs that have resolved similar questions in his-
tory can also be used to resolve the new API related
question.
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FIGURE 2. An API related question and the functional description of its
correct APL.

We present an example to illustrate the first observation.
Fig. 2 shows a simplified API related question® in Stack
Overflow. Once the question is submitted, other developers
try to resolve it by providing a correct API among thou-
sands of possible APIs. After a series of discussions, the cor-
rect API is recommended, i.e., java.text.SimpleDateFormat,
whose functional description in API specification® is also
shown in Fig. 2. We can see that many overlapping words
(in bold fonts) appear in both the question and the functional
description of its correct API, such as date, time, format, and
calendar, hence there is a good lexical match between them.

FIGURE 3. The correct API frequency in the corpus.

To better present the second observation, we list all the
correct APIs in the constructed corpus (see Section IV.B)
and count their frequencies to resolve API related questions.
We rank the correct APIs by their frequencies and show the
results in Fig. 3. The x-axis shows the correct API id and the
y-axis shows the frequency to resolve questions. We can see

2https:// stackoverflow.com/questions/11933137/how-to-get-iso-format-
from-time-in-milliseconds-in-java.

3 http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.
html.

6208

that, there are totally 419 correct APIs for 1,234 API related
questions in the corpus. On average, one correct API can
resolve nearly 3 API related questions. The most frequent
correct APl is java.lang.String, which can resolve as many as
51 API related questions. In addition, 212 correct APIs (more
than half correct APIs) can resolve no less than 2 API related
questions.

In conclusion, if there exists a good lexical match between
the new API related question and the functional description
in an API’s specification, the API is highly likely to resolve
this new question. In addition, correct APIs are overlapped for
API related questions in Stack Overflow. Hence, the correct
APIs of historical resolved questions can also be used to
resolve this new API related question. These observations
motivate us to consider both API specifications and historical
resolved questions to better resolve the Q2API task.

Ill. FRAMEWORK

In this section, we illustrate the framework of RASH shown in
Fig. 4. The goal of RASH is to resolve API related questions
in Stack Overflow by recommending correct APIs for them.
RASH takes in the new API related question, API specifica-
tions, and historical resolved questions as input, and outputs
the top ranked APIs for the new question. Hence, the sub-
mitter of the new question can check the recommended APIs
one by one until the correct APIs are found. In such a way,
the correct APIs can be quickly located. Obviously, it could
be ideal if the correct APIs are ranked as high as possible.
RASH consists of five components, including Scoring based
on API Specifications, Selecting Candidate APIs, Scoring
based on Historical Resolved Questions, Combining Scores,
and Ranking APIs. In the following part of this section, we
take the API related question in Fig. 2 as an example to clearly
illustrate how each component works.

FIGURE 4. The framework of RASH.

A. SCORING BASED ON API SPECIFICATIONS

This component aims to achieve a correlation score for each
APl in the same programming language (e.g., Java) as the new
API related question based on API specifications. This com-
ponent is designed by the rationality that, the more lexically
similar the functional description in an API’s specification
is to the new API related question, the more likely that they
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describe the same or similar API usages, thus the more likely
that the API can resolve this new question [11].

API specifications play an important role in explaining
API usages, including functionalities, behaviors, concepts,
and directives, etc., and developers highly expect to find their
desired information in API specifications [15]. In this paper,
we take Java API (version 7) as a case study and construct
a corpus containing 1,234 Java API related questions with
their correct Java APIs. Java API specifications are gener-
ated through Javadoc following a set of conventions with a
uniform style and structure. They are organized as a series of
HTML webpages, each of which introduces a specific Java
API package or API type [15]. The same as [11], we introduce
all the Java interface APIls, class APIs, exception APIs, and
error APIs as the possible APIs to rank and recommend, and
eventually achieve 3,871 Java APIs in total. As a result, it is
challenging to recommend correct APIs within so many APIs
for API related questions.

For each API, we achieve a correlation score by calcu-
lating the widely used cosine similarity between the new
API related question and its functional description in API
specification [16]. Before calculating the cosine similarity,
both the new question and the functional description are
transformed into vectors (known as Vector Space Model),
where each dimension stands for a term and its corresponding
value presents the term’s weight. This process consists of a
series of natural language processing steps, i.e., tokenization
(including camel case splitting), stemming, and stop word
removal [16]. Then, each term is given a weight measuring its
importance. In this study, we employ the widely used Term
Frequency (TF) x Inverse Document Frequency (IDF) to
measure the weight for each term. Given a document (the new
question or the functional description in this study), TF and
IDF of a term in this document can be calculated as follows.

i (1)

TF[Z

M=
o

1

where t stands for a term, n stands for the number of distinct
terms, and T corresponds to the frequency (occurrence num-
ber) of the term ¢ in the document.

D

IDF; = log——————
' 1 : 1 C dj)]

@)
where |D| is the number of documents in total and |{j:1Cd;}|
means the number of documents containing the term z.

Based on TF and IDF, the weight of a term ¢ can be
calculated by the following formula.

Weight, = TF; X IDF[ (3)

In such a way, we can measure the importance of each
term and transform both the new API related question and
the functional description in each API’s specification into
vectors.

As shown in Fig. 1, a new API related question contains
both question title and question body. We first transform
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question title and question body into two vectors separately
using the above-mentioned method. Then, we combine the
two vectors to form a final vector as the representation
of the new question. Inspired from existing related stud-
ies [17], [18], we double the weights of terms in guestion title
to strengthen their impacts, since guestion title is a concise
summary of the problem. Therefore, the final weights of the
terms in the final vector of the new API related question can
be calculated as follows.

W, = 2 x Weight;cyigge + 1 X Weight;cpody “4)

After transforming the new API related question and
the functional description in each API’s specification into
vectors, their cosine similarity is calculated by the following
formula.

i(Qi x Aj)

i=1

002 [ 342

i=1 i=1

simgpe(Q, A) = cos(Q, A) = &)

where Q is the new question and A is an APL. Q; and A; are
the final weights of term i in Q and A’s functional description.

Running Example: Given the API related question in
Fig. 2, RASH achieves a correlation score for each API,
ranging from 0.3708 to 0. The correlation scores of more
than 1,600 APIs are Os, so there is no overlapping word
in the new question and their functional description in API
specifications. The correlation score of the correct API
Jjava.text.SimpleDateFormat is 0.3506, which is the second
highest correction score in all the APIs.

B. SELECTING CANDIDATE APIs

This component aims to achieve candidate APIs after obtain-
ing a correlation score for each API. Intuitively, the higher
the correlation score of an API, the more likely the API can
resolve the new API related question. Hence, we rank APIs
based on their correlation scores and select the top 500 APIs
as candidate APIs (i.e., #candidate=500), which are highly
likely to be the correct APIs to resolve the new API related
question. Empirically, the bottom ranked APIs may introduce
noises and impose a negative impact on the recommendation
results. Hence, they are less likely to be the correct APIs
and filtered out. In the Experimental Results section, we will
validate whether selecting the top 500 APIs as candidates is
effective (see Section V.A).

Running Example: Taking the API related question
in Fig. 2 as an example, RASH obtains candidate APIs
(i.e., the top 500 APIs) based on their correlation scores in
this component. The correct API java.text.SimpleDate Format
ranks the second highest, so it is also regarded as a candidate
API. Those APIs whose functional description has no over-
lapping word with this question (i.e., achieving correlation
scores equaling to 0) are filtered out. It implies that RASH
can retain correct APIs and remove incorrect APIs as many
as possible.
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C. SCORING BASED ON HISTORICAL

RESOLVED QUESTIONS

This component aims to achieve another correlation score for
each API based on historical resolved questions with their
correct APIs. When a new API related question is submitted
to Stack Overflow, we can examine and analyze the histor-
ical similar questions with their correct APIs, since similar
questions tend to be resolved by similar or the same APIs
(see Section II.C). The correct APIs that have resolved similar
questions in history can also help to resolve the new API
related question. To the best of our knowledge, the infor-
mation in historical resolved questions has not been used
to address the Q2API task, and we first consider and fully
leverage it in this paper.

FIGURE 5. The linking graph of the new question and APIs.

We order all the questions based on their submission time.
For the new API related question, we consider the linking
information in the historical resolved API related questions,
which have been submitted and resolved before the new
question, with their correct APIs. As shown in Fig. 5, the
first layer and the second layer present the new API related
question and historical resolved questions, respectively, and
the third layer shows all the APIs. We first calculate the
cosine similarity between the new question and historical
resolved questions using formula (5). If their cosine similarity
is greater than 0, we link them together. Furthermore, for
the historical resolved questions in the second layer, we link
them to their correct APIs. In such a way, all the APIs can
be indirectly linked to the new API related question through
the historical resolved questions as middle agents. Hence,
the correlation score for each API can be obtained by the
following formula.

cos(Q, hisy)

my

simps(Q,A) = ) ©6)

hisgChis_sol(A)

where Q is the new question and A is an API. his_sol(A) is
the set of historical questions that can be resolved by A, and
mg, means the number of correct APIs his, has [16].
Running Example: The API related question in Fig. 2
is submitted on Aug. 13, 2012. Before the submission of
this question, 302 API related questions have been resolved
in the constructed corpus (see Section IV.B). The correct
API java.text.SimpleDate Format have resolved 9 API related
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questions in history. After analyzing these historical resolved
questions, RASH achieves the second correlation score for
the correct API of 2.2012, which is the highest in all the APIs.

D. COMBINING SCORES

This component aims to achieve a final score for each API.
After obtaining the two correlation scores for each API, we
first normalize them into the range from O to 1 by divided by
their maximal values. Then, we combine the two correlation
scores into a final score by calculating their arithmetic mean
as follows.

Simspe(Qv A) + simy;s(Q, A)
2

where X means the normalized value of X, e. g., Simgpe(Q, A)
is the normalized simg.(Q, A).

In this study, the two correlation scores for each API
are given the same weight due to two major reasons. First,
treating the two correlation scores equally is a simple but
efficient method [17]. Second, we find that the weights of
the correlation scores have little effect on the final results of
RASH in some preliminary experiments. In the Experimental
Results section, we will validate the effectiveness of treating
them equally (see Section V.B).

Running Example: For the API related question in Fig. 2,
RASH achieves the final score for each API in this compo-
nent. The two normalized correlation scores of the correct
API java.text.SimpleDateFormat are 0.9455 and 1, respec-
tively. Hence, the final score of the correct API is 0.9728,
which is the highest in all the APIs.

FinalScore(Q, A) =

(N

E. RANKING APIs
This component aims to rank candidate APIs and rec-
ommend the top 15 APIs by an API ranking scheme.
Recommending the top 15 results is a common practice in
the recommendation systems within the software engineer-
ing domain, and many similar works also employ the same
mechanism [11], [16]. The API ranking scheme is designed
by the following observations. If a candidate API appears in
the question title or tags of the new API related question, it
is highly likely that the question is discussing the usage of
the candidate API, since the submitter sometimes puts the
APIs, which he/she does not know the proper usages, in the
question title or tags to make the question easy to be found
and resolved. Hence, such candidate APIs should be ranked
the highest. In contrast, if there is no candidate API in the
question title or tags of the new question, the candidate APIs
achieving the larger final scores should be ranked higher.
Table 2 shows the API ranking scheme, which takes in can-
didate APIs as well as the final scores of all APIs, and outputs
the top 15 ranked APIs. First, we obtain the final scores for
all the candidate APIs, since we only consider candidate APIs
and filter out the rests (line 1). Next, we define an API set
named PriorSet, which is initialized as empty (line 2). The
APIs in the PriorSet are first-rank APIs, so they are ranked the
highest in the recommendation list. Then, for each candidate

VOLUME 6, 2018
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TABLE 2. The API ranking scheme.

Input: candidate APIs and the final scores of all APIs
obtain the final scores for all the candidate APIs
PriorSet = ®
foreach (API A in candidate APIs)
if (A appears in the question title and tags)
add A to PriorSet
if (PriorSet is not null)
rank APIs in PriorSet based on their frequencies in the question
title and tags. If two APIs have the same frequency, rank them
based on their first emerging locations
8 if (the number of ranked APIs is less than 15)
9 rank the rest candidate APIs based their final scores
Output: an API recommendation list containing 15 APIs

NN AW~

API (line 3), we check whether it appears in the question title
and tags of the new API related question (line 4). If true, this
candidate API is added into the PriorSet (line 5). In such a
way, after checking all the candidate APIs, we can obtain
an API PriorSet. For the APIs in the PriorSet (line 6), we
rank them based on their frequencies in the question title
and tags of the new API related question. If any two APIs
have the same frequency, we rank them based on their first
emerging locations, i.e., the APIs emerging in the front are
ranked higher (line 7). In such a way, we can rank candidate
APIs in the PriorSet. Finally, if the number of ranked APIs is
less than 15 (line 8), we rank the rest candidate APIs based
on their final scores (line 9). In this manner, we can obtain an
API recommendation list containing 15 APIs and recommend
them to the submitter of the new API related question.

Running Example: Still taking the API related question
in Fig. 2 as an example, there is no API contained in the ques-
tion title and tags of the question. As a result, the PriorSet is
empty. Then, all the candidate APIs are ranked based on their
final scores. The correct API java.text.SimpleDateFormat
achieves the largest final score, so it is ranked the highest.
Obviously, the correct API can be easily found by the sub-
mitter of the question, thus accelerating the resolution of this
question.

IV. EXPERIMENTAL SETUP

In this section, we first describe the experiment settings. Next,
we present how we collect and construct the corpus used in
the experiments. Then, we illustrate the details of the baseline
approach. Finally, we show the evaluation metrics employed
in this paper.

A. EXPERIMENT SETTINGS
In this study, we conduct all the experiments on a Core i7 CPU
computer with an § GB memory running Windows 7. RASH

is implemented in the Java Programming language compiled
by JIDK 7.

B. DATA COLLECTION

In the previous study, Ye et al. [11] propose a seminal
approach towards addressing the Q2API task, and evaluate
their approach over a corpus of 604 API related questions
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with their correct APIs. However, this corpus is not publicly
available. Hence, we construct a new corpus and open it to the
public [12]. Similarly, we follow four steps described in [11]
to construct the corpus.

1) We download the Stack Overflow dump files published
in September 2016,* and combine the questions tagged
with Java with their accepted answers to generate a
series of Q&A pairs. Eventually, we obtain 990,923
Java tagged Q&A pairs in this step.

2) For the Java tagged Q&A pairs, we only retain those
Q&A pairs whose accepted answers have hyperlinks
to the Java API specifications. In such a way, we can
ensure that these questions are API related questions.
After this step, we achieve 3,926 Q&A pairs.

3) For the retained Q&A pairs, we further filter out those
Q&A pairs whose user score of either the question or
the accepted answer is lower than 0. This step can
reduce low-quality Q&A pairs and false positive cor-
rect APIs as many as possible. After this step, 1,234
high-quality Q&A pairs can be obtained.

4) For each question in the retained Q&A pair, we obtain
the correct APIs by parsing the hyperlinks to the Java
API specifications in the accepted answer. In such a
way, the API specifications of the correct APIs have
semantic overlap with the accepted answers, thus the
correct APIs can resolve the API related questions.
In this step, we eventually achieve 1,234 Java API
related questions with their correct APIs.

It should be noted that Stack Overflow contains more
API related questions in reality. To make it easy to obtain
the correct APIs, conform to the definition of Q2API, and
follow the same procedures as [11], we construct the corpus
containing 1,234 API related questions, which is more than
twice as large as the corpus in [11]. In the future, we plan to
introduce more API related questions to verify RASH.

TABLE 3. Characteristics of the corpus.

# Avg. distinct words in question title 4.60

# Avg. distinct words in question body 46.12

# Avg. tags each question has 3.07

# Avg. sentences in question body 5.12
Submission time of the first question Sep. 9, 2008
Submission time of the last question Aug. 31,2016

The characteristics of the corpus are shown in Table 3.
On average, a question title includes 4.60 distinct words,
while a question body contains 46.12 distinct words
within 5.12 sentences. In addition, each question involves
nearly 3 fags. The first question is submitted on Sep. 9, 2008
and the last question is submitted on Aug. 31, 2016.

C. THE BASELINE APPROACH
Ye et al. first issue the task of Q2API and present their
attempts toward resolving this task using an IR technique. Itis

4https ://archive.org/details/stackexchange
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the state-of-the-art approach, so we employ it as the baseline
approach for comparison [11]. This baseline approach uses
the word embedding technique to calculate similarities and
recommend APIs for API related questions. Word embedding
is a technique to map words into vectors of real numbers.
Based on word embedding, the similarity between two words
can be calculated. Furthermore, the asymmetric document
similarity can also be calculated.

More specifically, for each new API related question, the
baseline approach calculates three features for each API
based on API specifications, including the cosine similarity,
the word embedding based similarity from the new question
to API, and the word embedding based similarity from API to
the new question. The cosine similarity is calculated between
the new question and the functional description in each API’s
specification. In the word embedding based similarity, an
asymmetric similarity is calculated between them after words
are represented into vectors. Then, a weighted sum of the
three features is calculated, and the weight of each feature
is trained from a training set using a learning-to-rank system,
which aims to optimize the rank so that the correct APIs are
ranked in the top of the recommendation list. Finally, all the
APIs are ranked based on their weighted sums, and the top
ranked APIs are recommended. They validate their approach
over a publicly unavailable corpus containing 604 Java API
related questions with their correct APIs. The results show
that the baseline approach is superior to the straightforward
method, which only uses the simple cosine similarity to rank
APIs.

D. EVALUATION METRICS
To measure the effectiveness of different approaches from
various aspects, inspired from [11], [16], and [19], we employ
four evaluation metrics in this study, including Hit Rate, Nor-
malized Discounted Cumulative Gain (NDCG), Mean Aver-
age Precision (MAP), and Mean Reciprocal Rank (MRR).
Among them, Hit Rate and NDCG are often used to evaluate
recommendation systems [20], and MAP as well as MRR
are widely used in IR [11], [16]. Since we recommend the
top 15 APIs for each API related question, we calculate the
four evaluation metrics from top 1 to top 15 to clearly and
incrementally present the performance, which are denoted
as Hit@K, NDCG@K, MAP@K, and MRR@K (K is the
recommended number ranging from 1 to 15), respectively.
Hit Rate measures the percentage of questions that can
be resolved by the recommended APIs [20]. Hit Rate is
calculated by the number of questions whose correct APIs
are exactly recommended divided by the number of all the
questions, of which the formula is shown as follows.
#questions resolved by top K APIs

Hit@K = —— ®)
#questions in total

NDCG measures the quality of the rank by calculating
the gain of each result according to its position [20]. As a
normalized DCG, NDCG is calculated by divided by a special
ideal DCG, which ranks all 1s higher than Os. Therefore,
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NDCG can be calculated as follows.

DCG@K
NDCG@K = —— 9
ideal DCG@K ©
K .
2rel(l) -1
DCG@K = § —_— (10)
logo(i+ 1)

i=1

where i is the rank. rel(i) is a binary function to check whether
the API in rank i is correct or not. For example, if the API in
rank i is a correct API, rel(i) = 1. Otherwise, rel(i) = 0.

MAP measures the quality of the rank when a query (a new
API related question in this paper) may have multiple correct
answers (correct APIs in this paper) [11], [16]. MAP is the
mean of all the average precisions of queries, and it can be
calculated as follows.

K
| 2 > (P(0) x rel(i)

MAP@K = — Y =L
10| s #correct answers

(11)

. # correct answers in top i
P(i) = P

. 12)
i

where j is a query, |Q| is the number of queries, and P(i) is

the precision at a given cut-off rank i.

MRR is another widely used evaluation metric to measure
the quality of the rank in IR [11], [16]. MRR is the average of
the reciprocal ranks for all the queries. The reciprocal rank of
a single query is the multiplicative inverse of the first correct
answer. Hence, MRR can be calculated as follows.

Q

1 1
MRR@K = — _—
|O] Py K_Rank;

(13)
where K_Rank; means the rank position of the first correct
answer in the top K recommended list for the i-th query.

V. EXPERIMENTAL RESULTS
In this section, we investigate five Research Questions (RQs)
to verify the effectiveness of RASH.

A. INVESTIGATION TO RQ1

1) RQ1: HOW DOES THE NUMBER OF CANDIDATE APIs
INFLUENCE THE PERFORMANCE OF RASH?

Motivation: In the Selecting Candidate APIs component of
RASH, the number of candidate APIs (#candidate) is set
to 500 by default, i.e., #candidate=500. To verify whether
setting #candidate=500 is effective and close to the optimal
value, we set up this RQ.

Approach: We adjust #candidate by setting it to several
different values, including 100, 500, 1,000, and the number
of all the APIs (i.e., 3,871). By comparing the results among
{100, 500, and 1,000}, we can know which value is the
best and close to the optimal value. In addition, regarding
all the APIs as candidate APIs is equal to removing the
component of Selecting Candidate APIs. By comparing the
results between 500 and the number of all the APIs, we can

VOLUME 6, 2018



J. Zhang et al.: Recommending APIs for API-Related Questions in Stack Overflow

IEEE Access

FIGURE 6. Hit rate and NDCG for different number of candidate APIs.

TABLE 4. MAP and MRR for different number of candidate APIs.

MAP MRR
100 500 | 1,000 all 100 500 | 1,000 all
0.2753 | 0.2769 | 0.2725 | 0.2583 | 0.2853 | 0.2869 | 0.2820 | 0.2674
0.3014 | 0.3020 | 0.2976 | 0.2763 | 0.3096 | 0.3100 | 0.3055 | 0.2836
0.3239{0.3244 | 0.3182 | 0.2961 | 0.3325 | 0.3329 | 0.3266 | 0.3039
0.3363 | 0.3376 | 0.3309 | 0.3065 | 0.3445 | 0.3457 | 0.3387 | 0.3140
0.3448 | 0.3456 | 0.3395 | 0.3167 | 0.3521 | 0.3530 | 0.3467 | 0.3241
0.3507 | 0.3521 | 0.3455 | 0.3227 | 0.3580 | 0.3595 | 0.3526 | 0.3299
0.3550 | 0.3559 | 0.3495 | 0.3271 | 0.3622 | 0.3631 | 0.3564 | 0.3339
0.3580 | 0.3596 | 0.3525 | 0.3314 | 0.3651 | 0.3666 | 0.3592 | 0.3380
9 10.3605 | 0.3621 | 0.3552 | 0.3341 | 0.3678 | 0.3694 | 0.3620 | 0.3406
101 0.3624 | 0.3639 | 0.3576 | 0.3362 | 0.3696 | 0.3711 | 0.3642 | 0.3428
11]0.3642 | 0.3657 | 0.3595 | 0.3383 | 0.3713 | 0.3728 | 0.3662 | 0.3448
1210.3657 | 0.3670 | 0.3611 | 0.3401 | 0.3727 | 0.3740 | 0.3678 | 0.3465
1310.3666 | 0.3679 | 0.3618 | 0.3412 | 0.3737 | 0.3749 | 0.3685 | 0.3478
1410.3673 | 0.3688 | 0.3629 | 0.3421 | 0.3744 | 0.3758 | 0.3696 | 0.3486
1510.3680 | 0.3694 | 0.3635 | 0.3430 | 0.3751 | 0.3765 | 0.3702 | 0.3495

~

0o | O\ | B W 1| —

know whether the component of Selecting Candidate APIs is
effective.

Result: Fig. 6 shows the results of RASH when setting
#candidate to different values in terms of Hit Rate and NDCG
from top 1 to top 15, and Table 4 presents the results of
RASH in terms of MAP and MRR accordingly. A specific
number in the figure and table means setting #candidate
equaling to it, e.g., /00 means #candidate=100, and all means
#candidate=the number of all the APIs.

First, we try to compare the results when setting #can-
didate to {100, 500, and 1,000}. We can see from Fig. 6
and Table 4 that, RASH achieves the best results on the
whole when setting #candidate=500, especially when rec-
ommending 15 APIs. For example, RASH achieves Hit@15
and NDCG @15 of 69.12% and 0.4475. In contrast, when set-
ting #candidate=100 and #candidate=1,000, RASH achieves
64.34% and 68.64% in terms of Hit@15 and 0.4427 and
0.4409 in terms of NDCG@15, respectively. As for MAP
and MRR, RASH also achieves the best results when setting
#candidate=500. Therefore, setting #candidate=500 is close
to the optimal value.

Comparing the results between 500 and the number of all
the APIs can show the effectiveness of the Selecting Candi-
date APIs component. As shown in Fig. 6 and Table 4, RASH
achieves better results when setting #candidate=500 than
that when setting #candidate=all. For example, when setting
#candidate=500, RASH achieves Hit@15 and NDCG@15
of 69.12% and 0.4475, respectively. In contrast, when
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setting #candidate=all, RASH achieves Hit@15 of 67.67%
and NDCG@15 of 0.4222, respectively. Additionally, in
terms of MAP and MRR, RASH also achieves better results
when setting #candidate=500. Therefore, the component of
Selecting Candidate APIs is effective.

The reason may be that, using a small parameter value
(e.g., #candidate=100) will filter out some correct APIs.
In contrast, using a large one (e.g., #candidate=1,000 or
#candidate=all) will retain too many irrelevant APIs. Hence,
choosing a suitable moderate value (e.g., #candidate=500)
can retain correct APIs and filter out irrelevant APIs as many
as possible.

Conclusion: RASH achieves the best results when set-
ting #candidate=500. The component of Selecting Candidate
APIs is effective to retain correct APIs and reduce irrelevant
APIs.

B. INVESTIGATION TO RQ2

1) RQ2: WHETHER THE COMBINATION OF BOTH THE TWO
CORRELATION SCORES CAN ACHIEVE BETTER RESULTS
THAN ANY OF THEM ALONE?

Motivation: RASH combines both the correlation scores from
API specifications and historical resolved questions to rank
APIs for new API related questions. To validate whether
combining them can achieve better results than any of them
alone, we set up this RQ.

Approach: We define two variants of RASH. The first vari-
ant is named RASH_spe, which uses the correlation scores
from API specifications to select candidate APIs, regards
these correlation scores as the final scores for APIs, and
applies the same API ranking scheme to rank and recom-
mend candidate APIs. The second variant named RASH_his
only considers the correlation scores from historical resolved
questions in the same way. By comparing the results of
RASH against its two variants, we can know whether comb-
ing the two correlation scores could achieve better results.
In addition, by comparing the results between RASH_spe
and RASH_his, we can acquire whether giving the two
correlation scores from API specifications and historical
resolved questions the same weight in formula (7) is effective
(see Section II1.D).

FIGURE 7. Hit rate and NDCG for RASH and its variants.

Results: Fig. 7 and Table 5 show the results of RASH
and its two variants in terms of Hit Rate, NDCG, MAP,
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TABLE 5. MAP and MRR for RASH and its variants.

K MAP MRR

RASH_spe | RASH_his | RASH | RASH_spe | RASH_his | RASH
1 0.2761 0.2749 10.2769 | 0.2861 0.2844 | 0.2869
2 0.3041 0.2986 [0.3020 | 0.3120 0.3063 | 0.3100
3 0.3204 0.3140 [0.3244 | 0.3290 0.3220 | 0.3329
4 0.3306 0.3252  0.3376 | 0.3391 0.3329 | 0.3457
5 0.3376 0.3324  10.3456 | 0.3453 0.3394 | 0.3530
6 0.3434 0.3377 10.3521 | 0.3512 0.3447 | 0.3595
7 0.3468 0.3410 [0.3559 | 0.3544 0.3478 | 0.3631
8 0.3492 0.3436 0.3596 | 0.3568 0.3505 | 0.3666
9 0.3509 0.3456 |0.3621 | 0.3584 0.3525 | 0.3694
10| 0.3522 0.3470 10.3639 | 0.3598 0.3539 | 0.3711
11| 0.3540 0.3491 ]0.3657 | 0.3616 0.3560 | 0.3728
12| 0.3551 0.3502 [0.3670 | 0.3626 0.3570 | 0.3740
13| 0.3561 0.3510 [0.3679 | 0.3635 0.3579 | 0.3749
14| 0.3566 0.3515 [0.3688 | 0.3640 0.3584 | 0.3758
15| 0.3570 0.3523  10.3694 | 0.3644 0.3591 | 0.3765

and MRR from top 1 to top 15. It is obvious that RASH
achieve better results than RASH_spe and RASH_his, espe-
cially when the number of recommended APIs is increasing.
Meanwhile, RASH_spe and RASH_his perform similarly in
terms of all the evaluation metrics. When recommending
only one API (i.e., K=1), RASH achieves similar results
as RASH_spe and RASH_his. For example, the Hit@1 of
RASH is 28.69%. While, RASH_spe and RASH_his achieve
28.61% and 28.44%, respectively. In terms of the other eval-
uation metrics, RASH also achieves the best results, but the
disparity is trivial. When considering top 5 APIs, RASH still
achieves better results than RASH_spe and RASH_his. For
example, RASH achieves Hit@5 of 48.95% and improves
RASH_spe and RASH_his by 2.92% and 3.81%, respec-
tively. When recommending 10 APIs, RASH performs quite
better than RASH_spe and RASH_his. In particular, when
the recommended length is increased to 15, RASH achieves
significantly better results than RASH_spe and RASH_his.
For instance, RASH achieves Hit@15 of 69.12%. In contrast,
RASH_spe and RASH_his only achieve 62.24% and 62.32%,
respectively. In addition, as for NDCG @ 15, RASH reaches to
0.4475 and improves RASH_spe and RASH_his by 0.0249
and 0.0292, respectively. As for MAP@15 and MRR@15,
RASH also outperforms its variants.

After demonstrating the effectiveness of combining the
correlation scores from both API specifications and historical
resolved questions, we would like to explore the underlying
reasons. Correlation scores from API specifications detect
the correct APIs for new API related questions from the
lexical perspective. API specifications explain APIs’ func-
tionalities in the implementation domain, and API related
questions in Stack Overflow describe the requirements in the
problem domain. If they can match lexically, the APIs are
highly likely to resolve the API related questions. In addition,
we observe that the correct APIs are overlapped for similar
questions. Therefore, we fully leverage the correct APIs that
have resolved similar questions in history to resolve new API
related questions. In such a way, the two correlation scores
from API specifications and historical resolved questions
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FIGURE 8. The user score distribution in the corpus. To better present the
trend, we show the base-e logarithm of each user score.

complement and cooperate each other. Hence, RASH can
achieve better results.

In addition, we can also find that RASH_spe and
RASH_his achieve similar results in terms of all the evalua-
tion metrics. It implies that the two correlation scores from
API specifications and historical resolved questions make
similar contributions to detect the correct APIs. Hence, it is
reasonable to give the two correlation scores the same weight
in formula (7), when calculating the final score for each API
(see Section II1.D).

Conclusion: By aggregating both the correlation scores
from API specifications and historical resolved questions,
RASH can better recommend correct APIs for API related
questions.

C. INVESTIGATION TO RQ3
1) RQ3: IS RASH SENSITIVE TO THE QUALITY
OF THE QUESTIONS?
Motivation: Due to different experience and expertise of
submitters, the quality of API related questions may vary
sharply [21]. Some questions can clearly describe the real
problems without missing any important information. In con-
trast, the other questions may lack some critical details, mak-
ing them hard to be resolved. To investigate how RASH per-
forms over different quality of questions, we set up this RQ.
Approach: We split the constructed corpus into two sub-
sets, i.e., the high-quality subset and the low-quality subset.
Similar as [21], the quality of a question is judged by its
user score. Inspired from [5] and [8], we set up 2 as the
threshold to split the corpus, thus the two generated subsets
can retain similar characteristics with the corpus as much
as possible. If the user score of a question is larger than 2,
it is treated as a high-quality question and put into the high-
quality subset. Otherwise, it is placed into the low-quality
subset. We rank the API related questions in the constructed
corpus based on their user scores, and find that it shows a
long-tailed distribution as plotted in Fig. 8. About two-third
questions (i.e., 826 questions) achieve user scores no more
than 2, and they are allocated to the low-quality subset. The
rest 408 questions achieving user scores larger than 2 are
put into the high-quality subset. By applying RASH over the
two subsets separately, we can obtain the comparison results.
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If RASH performs similarly over the two subsets, it indicates
that RASH is insensitive and robust to the quality of the
questions.

FIGURE 9. Hit rate and NDCG for different subsets.

TABLE 6. MAP and MRR for different subsets.

K MAP MRR
high low high low

1 0.2800 0.2730 0.2892 0.2833
2 0.3117 0.2963 0.3199 0.3045
3 0.3321 0.3169 0.3411 0.3251
4 0.3425 0.3299 0.3509 0.3378
5 0.3515 0.3377 0.3592 0.3450
6 0.3566 0.3443 0.3645 0.3519
7 0.3615 0.3486 0.3684 0.3562
8 0.3633 0.3529 0.3705 0.3603
9 0.3658 0.3562 0.3730 0.3635
10 0.3666 0.3580 0.3737 0.3652
11 0.3683 0.3592 0.3755 0.3664
12 0.3693 0.3610 0.3765 0.3684
13 0.3703 0.3619 0.3775 0.3692
14 0.3712 0.3625 0.3783 0.3699
15 0.3720 0.3633 0.3792 0.3707

Results: Fig. 9 and Table 6 show the result of RASH over
the two subsets of questions with different quality in terms of
Hit Rate, NDCG, MAP, and MRR. high and low present the
results of RASH over the high-quality subset and the low-
quality subset, respectively. We can see that RASH performs
similarly over the high-quality subset and the low-quality
subset. For example, RASH achieves Hit@15 of 66.91%
over the high-quality subset and 69.37% over the low-quality
subset. In terms of NDCG, RASH achieves NDCG@15 of
0.4449 over the high-quality subset and 0.4433 over the low-
quality subset, in which the disparity is trivial. Similarly,
RASH also achieves similar results over the two subsets in
terms of MAP and MRR.

The reason why RASH is insensitive to different quality of
questions may be that, RASH utilizes two correlation scores
to rank APIs. A low-quality question may cause a correlation
score fails to find the correct APIs. However, another corre-
lation score can compensate for this deficiency to precisely
detect the correct APIs. As a result, questions with different
quality have little impact on the performance of RASH.

Conclusion: RASH performs similarly over the high-
quality questions and the low-quality questions. RASH is
insensitive and robust to the quality of questions.
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D. INVESTIGATION TO RQ4

1) RQ4: WHAT IS THE IMPACT OF THE QUESTION NUMBER
ON THE PERFORMANCE OF RASH?

Motivation: RASH leverages the information in historical
resolved questions with their correct APIs to recommend
APIs for new API related questions. More resolved ques-
tions with their correct APIs exist in history, more useful
information can be leveraged by RASH. Hence, the number
of questions may influence the performance of RASH. To
investigate what is the impact of the question number on
RASH’s performance, we set up this RQ.

Approach: There are 1,234 API related questions in the
constructed corpus, and we sort them sequentially based on
their submission time. We verify RASH over the early N
submitted questions, where N ranges from 1 to 1,234. The
results of early N submitted questions are synthesized to form
the final results of RASH. In such a way, we can know how
RASH performs when the number of questions changes.

FIGURE 10. Hit rate for different number of questions.

FIGURE 11. NDCG for different number of questions.

Results: Fig. 10, 11, 12, and 13 show the results of RASH
over different number of questions in terms of the four eval-
uation metrics. To clearly distinguish and show the results of
each evaluation metric, we only present the results of RASH
when recommending the top 5, top 10, and top 15 APIs.

We can see from the figures that all the evaluation metrics
are unstable when RASH is applied over a small number of
questions, i.e., less than about 200 questions. The values of
these evaluation metrics raise in some specific number of
questions, while fall in the others. For example, when the
number of questions is only 10, RASH achieves Hit@15
of 50%. Then, it raises to 60% when the number of questions
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FIGURE 12. MAP for different number of questions.

FIGURE 13. MRR for different number of questions.

reaches to 20. However, the value of Hit@ 15 falls to 56.67%
for 30 questions. The other evaluation metrics also show
similar trends.

When the number of questions exceeds a specific value,
i.e., 200, RASH behaves steadily and all the evaluation met-
rics show slightly upward trends along with the increasing
of the question number. For example, along with the ques-
tion number increasing from 200 to 1,234, RASH achieves
Hit@15 from 62.5% to 69.12%. The curves of the other
evaluation metrics also show similar trends along with the
growth of the question number.

This phenomenon can be explained as follows. A small
number of questions means that only limited number of his-
torical resolved questions exist. In this situation, marginally
less information in historical resolved questions with their
correct APIs can be leveraged by RASH, which mainly
relies on API specifications to detect correct APIs. Hence,
RASH performs unstable. When the information in histori-
cal resolved questions is accumulated large enough, RASH
learns from both API specifications and historical resolved
questions, so RASH performs better.

Conclusion: The performance of RASH is steadily increas-
ing, when the number of questions exceeds 200.

E. INVESTIGATION TO RQ5

1) RQ5: HOW DOES RASH PERFORM COMPARED AGAINST
THE BASELINE APPROACH?

Motivation: As we described, the baseline approach is the
state-of-the-art approach to resolve the Q2API task. In this
RQ, we try to investigate whether RASH is superior to the
baseline approach.
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Approach: Based on the procedures described in [11], we
implement the baseline approach accordingly and verify it
over the constructed corpus to achieve the results.

FIGURE 14. Hit rate and NDCG for different approaches.

TABLE 7. MAP and MRR for different approaches.

K MAP MRR
baseline | RASH | Improvement | baseline | RASH | Improvement

1| 0.1536 {0.2769 | +0.1233 0.1580 |0.2869 | +0.1289
2 | 0.1960 {0.3020 |  +0.1060 0.2010 | 0.3100 | +0.1090
3102143 103244 +0.1101 0.2188 |0.3329 | +0.1141
41 0.2230 10.3376 |  +0.1146 0.2277 0.3457 | +0.1180
5 | 0.2300 {0.3456 | +0.1156 0.2347 10.3530 | +0.1183
6 | 0.2342 |0.3521 +0.1179 0.2391 [0.3595| +0.1204
7 | 0.2375 {0.3559 | +0.1184 0.2424 |0.3631 +0.1207
8 1 0.2399 10.3596 | +0.1197 0.2449 10.3666 | +0.1217
9 | 0.2420 | 0.3621 +0.1201 0.2470 0.3694 |  +0.1224
10 0.2435 [ 0.3639 | +0.1204 0.2484 |0.3711 +0.1227
11] 0.2448 | 0.3657 | +0.1209 0.2495 [ 0.3728 |  +0.1233
12 0.2461 | 0.3670 | +0.1209 0.2507 [0.3740 | +0.1233
131 0.2472 103679 | +0.1207 0.2518 0.3749 | +0.1231
141 0.2479 103688 | +0.1209 0.2525 | 0.3758 | +0.1233
15] 0.2488 | 0.3694 | +0.1206 0.2534 10.3765| +0.1231

Results: Fig. 14 shows the results of RASH and the base-
line approach in terms of Hit Rate and NDCG, and Table 7
presents the results of MAP and MRR accordingly. From the
figure and table we can see that, RASH achieves significantly
better results than the baseline approach.

RASH achieves Hit@5 of 48.59% and NDCG@5 of
0.3862. However, the baseline only achieves 36.79% and
0.2679, respectively. In terms of MAP and MRR, RASH
also outperforms the baseline approach by 0.1156 and
0.1183. When the length of the recommendation list improves
to 10, RASH achieves Hit@10 of 62.40%. It indicates
that more than 62% correct APIs can be recommended.
In contrast, the baseline approach only achieves 47.08%.
As for the other evaluation metrics, RASH also outper-
forms the baseline approach by about 0.12. When recom-
mending 15 APIs for each API related question, RASH
achieves Hit@15 of 69.12% and the baseline approach only
achieves 53.48%. It implies that RASH recommends almost
70% correct APIs for API related questions, and outper-
forms the baseline approach by 15.64%. In addition, RASH
achieves NDCG@15 of 0.4475 and the baseline approach
only achieves 0.3173. In terms of MAP@ 15 and MRR@15,
RASH also outperforms the baseline approach by 0.1206 and
0.1231, respectively.
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The reasons why RASH can achieve better results may be
that, it fully leverages the information in historical resolved
questions with their correct APIs to detect correct APIs.
We have the observation that similar questions share similar
or the same correct APIs (see Section II.C), based on which
we design our novel approach RASH. In addition, RASH
employs an important component, i.e., Selecting Candidate
APIs, to accurately filter out incorrect APIs so as to further
improve the results.

Conclusion: RASH significantly outperforms the state-of-
the-art approach. RASH can better recommend correct APIs
for API related questions in Stack Overflow.

VI. THREAT TO VALIDITY
In this section, we introduce threats to validity, including
threats to internal validity and threats to external validity.

A. THREATS TO INTERNAL VALIDITY

Threats to internal validity are the potential errors or biases
in the experiments. RASH aims to recommend correct APIs
for new API related questions in Stack Overflow based on
API specifications and historical resolved questions. A threat
of RASH is the quality of API specifications. API speci-
fications are released accompanied with APIs to describe
APIs’ usages, and they are usually constructed in a standard
process (e.g., Javadoc) by experienced developers [22]-[24].
Hence, the quality of API specifications can be guaranteed
to a great extent. Another threat of RASH is the parameter
selection, i.e., the number of candidate APIs. It is hard to
choose an optimal value for this parameter by experience, and
the optimal value may be various in different corpora. In this
paper, we set it to 500 by default and validate its effectiveness
in RQ1. In the future, we plan to automatically configure the
optimal value for this parameter in RASH.

B. THREATS TO EXTERNAL VALIDITY

Threats to external validity are related to the generalization
of RASH to other contexts and research settings. We verify
RASH over a constructed corpus containing 1,234 Java API
related questions in Stack Overflow, and the results show that
RASH is robust and superior to the state-of-the-art approach.
It is unknown how RASH performs over questions related
to other APIs like C# and in other Q&A forums like Quora.
In the future, we plan to extend the generalization of RASH
by introducing more questions related to diverse APIs in other
Q&A forums.

VIl. RELATED WORK

In this section, we briefly review and discuss two main related
works, i.e., mining Stack Overflow and issues related to API
usages.

A. MINING STACK OVERFLOW

As a popular technical Q&A forum, Stack Overflow contains
valuable information assembling crowd knowledge from mil-
lions of developers, and a lot of research tasks have been
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proposed to mine Stack Overflow in recent years. These
research tasks can be roughly divided into two categories, i.e.,
analyzing Stack Overflow and utilizing Stack Overflow.

1) ANALYZING STACK OVERFLOW

Some empirical studies aim to analyze the information
in Stack Overflow. Barua et al. explore what developers
care about by studying all the posts in Stack Overflow,
and use topic model to analyze the topics and trends [21].
Yang et al. [25] study what security related questions
developers ask by conducting a large-scale study on secu-
rity related questions. Similarly, Rosen and Shihab [26]
analyze mobile related questions in Stack Overflow.
Beyer and Pinzger [27] find that the most commonly asked
questions are “How” and ‘“What” questions by analyz-
ing Android related posts. Bajaj et al. [28] analyze web
development related posts in Stack Overflow to uncover the
challenges for web developers. Linares-Vasquez et al. [29]
analyze how API changes trigger questions in Stack
Overflow.

Our work belongs to the category of analyzing Stack Over-
flow. Different from these studies, we try to resolve API
related questions by recommending correct APIs for them
rather than empirically study them.

2) UTILIZING STACK OVERFLOW

The crowd knowledge in Stack Overflow can be leveraged
to resolve other research tasks. Gao et al. [30] fix recur-
ring crash bugs by analyzing Q&A pairs in Stack Over-
flow. Nie ef al. [19] employ Q&A pairs in Stack Over-
flow to expand the queries to improve the performance of
code search. Jiang et al. [31] leverage API related Q&A
pairs as features to better detect relevant tutorial fragments.
Treude and Robillard [32] enrich API documentation
with insight sentences extracted from Stack Overflow.
Wong et al. [33] automatically generate code comments
based on code segments with their descriptions in Stack
Overflow.

Unlike the above-mentioned studies, we try to recommend
correct APIs for API related questions in Stack Overflow,
which could accelerate their resolution and save developers’
time.

B. ISSUES RELATED TO API USAGES

APIs are hard to learn, and developers will encounter various
usage issues when programming with APIs [34]. Robillard
and DeLine [35] find that the most severe problem for devel-
opers to learn APIs is inadequate API documentation and
other learning resources. Zhou and Walker [36] conduct a
retrospective analysis on API deprecation in open source
libraries. Robbes et al. [37] study the react of developers
to API deprecation in a Smalltalk ecosystem, and they find
that developers sometimes do not consider API deprecation
instructions. Linares-Vasquez et al. [38] find that change
prone and bug prone APIs are threats to the success of mobile
applications, and developers are suggested not to use change
prone and bug prone APIs. In addition, McDonnell et al. [6]
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study the impact of unstable APIs to their client code, and
they suggest that developers should avoid using unstable
APIs.

Our work is different from these studies. In this paper, we
try to resolve API related questions by recommending correct
APIs for them.

VIIl. CONCLUSION AND FUTURE WORK

Developers usually encounter API related programming
problems and ask them in Q&A forums like Stack Over-
flow. Hence, automatically answering API related questions
is significant to developers. In this paper, we propose a
novel approach named RASH towards resolving API related
questions by recommending correct APIs for them. RASH
combines and fully leverages the information in both API
specifications and historical resolved questions to detect
correct APIs for new API related questions. We conduct
extensive experiments over a publicly available corpus. The
experimental results show that RASH can hit nearly 70%
correct APIs and outperform the state-of-the-art approach
by 15.64% when recommending 15 APIs for each question.
Hence, RASH is capable of better resolving API related
questions to further boost developer productivity.

For the future work, we will improve RASH in the fol-
lowing directions. First, we plan to automatically configure
the parameters in RASH. Second, we try to verify RASH
over questions related to other commonly used APIs, e.g., C#.
Third, a tool encapsulating RASH will be developed and
distributed to help developers resolve API related questions.
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